MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
Our understanding of human disease can be improved by integrating the abundance of high throughput biomedical data. Here, the authors use deep learning methods successfully used on images to integrate various types of omics data to improve patient classification and identify disease biomarkers.
Guardado en:
Autores principales: | Tongxin Wang, Wei Shao, Zhi Huang, Haixu Tang, Jie Zhang, Zhengming Ding, Kun Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/288469ae1b8548578e585c76f18caf41 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MSGCN: Multi-Subgraph Based Heterogeneous Graph Convolution Network Embedding
por: Junhui Chen, et al.
Publicado: (2021) -
Graph convolutional and attention models for entity classification in multilayer networks
por: Lorenzo Zangari, et al.
Publicado: (2021) -
scGCN is a graph convolutional networks algorithm for knowledge transfer in single cell omics
por: Qianqian Song, et al.
Publicado: (2021) -
Graph convolutional network method for small sample classification of hyperspectral images
por: ZUO Xibing, et al.
Publicado: (2021) -
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021)