Machine learning model for sequence-driven DNA G-quadruplex formation
Abstract We describe a sequence-based computational model to predict DNA G-quadruplex (G4) formation. The model was developed using large-scale machine learning from an extensive experimental G4-formation dataset, recently obtained for the human genome via G4-seq methodology. Our model differentiate...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/289341f558e943b6bbdbc39c89dcf616 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:289341f558e943b6bbdbc39c89dcf616 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:289341f558e943b6bbdbc39c89dcf6162021-12-02T15:05:14ZMachine learning model for sequence-driven DNA G-quadruplex formation10.1038/s41598-017-14017-42045-2322https://doaj.org/article/289341f558e943b6bbdbc39c89dcf6162017-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-14017-4https://doaj.org/toc/2045-2322Abstract We describe a sequence-based computational model to predict DNA G-quadruplex (G4) formation. The model was developed using large-scale machine learning from an extensive experimental G4-formation dataset, recently obtained for the human genome via G4-seq methodology. Our model differentiates many widely accepted putative quadruplex sequences that do not actually form stable genomic G4 structures, correctly assessing the G4 folding potential of over 700,000 such sequences in the human genome. Moreover, our approach reveals the relative importance of sequence-based features coming from both within the G4 motifs and their flanking regions. The developed model can be applied to any DNA sequence or genome to characterise sequence-driven intramolecular G4 formation propensities.Aleksandr B. SahakyanVicki S. ChambersGiovanni MarsicoTobias SantnerMarco Di AntonioShankar BalasubramanianNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Aleksandr B. Sahakyan Vicki S. Chambers Giovanni Marsico Tobias Santner Marco Di Antonio Shankar Balasubramanian Machine learning model for sequence-driven DNA G-quadruplex formation |
description |
Abstract We describe a sequence-based computational model to predict DNA G-quadruplex (G4) formation. The model was developed using large-scale machine learning from an extensive experimental G4-formation dataset, recently obtained for the human genome via G4-seq methodology. Our model differentiates many widely accepted putative quadruplex sequences that do not actually form stable genomic G4 structures, correctly assessing the G4 folding potential of over 700,000 such sequences in the human genome. Moreover, our approach reveals the relative importance of sequence-based features coming from both within the G4 motifs and their flanking regions. The developed model can be applied to any DNA sequence or genome to characterise sequence-driven intramolecular G4 formation propensities. |
format |
article |
author |
Aleksandr B. Sahakyan Vicki S. Chambers Giovanni Marsico Tobias Santner Marco Di Antonio Shankar Balasubramanian |
author_facet |
Aleksandr B. Sahakyan Vicki S. Chambers Giovanni Marsico Tobias Santner Marco Di Antonio Shankar Balasubramanian |
author_sort |
Aleksandr B. Sahakyan |
title |
Machine learning model for sequence-driven DNA G-quadruplex formation |
title_short |
Machine learning model for sequence-driven DNA G-quadruplex formation |
title_full |
Machine learning model for sequence-driven DNA G-quadruplex formation |
title_fullStr |
Machine learning model for sequence-driven DNA G-quadruplex formation |
title_full_unstemmed |
Machine learning model for sequence-driven DNA G-quadruplex formation |
title_sort |
machine learning model for sequence-driven dna g-quadruplex formation |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/289341f558e943b6bbdbc39c89dcf616 |
work_keys_str_mv |
AT aleksandrbsahakyan machinelearningmodelforsequencedrivendnagquadruplexformation AT vickischambers machinelearningmodelforsequencedrivendnagquadruplexformation AT giovannimarsico machinelearningmodelforsequencedrivendnagquadruplexformation AT tobiassantner machinelearningmodelforsequencedrivendnagquadruplexformation AT marcodiantonio machinelearningmodelforsequencedrivendnagquadruplexformation AT shankarbalasubramanian machinelearningmodelforsequencedrivendnagquadruplexformation |
_version_ |
1718388880126771200 |