Automatic RadLex coding of Chinese structured radiology reports based on text similarity ensemble
Abstract Background Standardized coding of plays an important role in radiology reports’ secondary use such as data analytics, data-driven decision support, and personalized medicine. RadLex, a standard radiological lexicon, can reduce subjective variability and improve clarity in radiology reports....
Enregistré dans:
Auteurs principaux: | Yani Chen, Shan Nan, Qi Tian, Hailing Cai, Huilong Duan, Xudong Lu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/28a3f7883cbc4a23bbeec743bcbee2bd |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Accurate Single-Cell Clustering through Ensemble Similarity Learning
par: Hyundoo Jeong, et autres
Publié: (2021) -
Comparative analysis of machine learning algorithms for computer-assisted reporting based on fully automated cross-lingual RadLex mappings
par: Máté E. Maros, et autres
Publié: (2021) -
Application Of Machine Learning Methods To Compare Disciplines Content Using Text Data
par: Roman Kupriyanov, et autres
Publié: (2021) -
MBD Based 3D CAD Model Automatic Feature Recognition and Similarity Evaluation
par: Shuhui Ding, et autres
Publié: (2021) -
A Survey of Automatic Text Summarization: Progress, Process and Challenges
par: M. F. Mridha, et autres
Publié: (2021)