Quantifying the impact of addressing data challenges in prediction of length of stay
Abstract Background Prediction of length of stay (LOS) at admission time can provide physicians and nurses insight into the illness severity of patients and aid them in avoiding adverse events and clinical deterioration. It also assists hospitals with more effectively managing their resources and ma...
Enregistré dans:
Auteurs principaux: | Amin Naemi, Thomas Schmidt, Marjan Mansourvar, Ali Ebrahimi, Uffe Kock Wiil |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/28a80b8dfdd84e5d8ab89f300bf51680 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Results of Behavioral Evaluations Predict Length of Stay for Shelter Dogs
par: Betty McGuire, et autres
Publié: (2021) -
Predicting length of stay in hospitals intensive care unit using general admission features
par: Merhan A. Abd-Elrazek, et autres
Publié: (2021) -
Estimation of the Maximum Length of the Humerus from Its Segments’ Lengths
par: Mutluay,Sükriye Deniz, et autres
Publié: (2020) -
Unmanaged Pharmacogenomic and Drug Interaction Risk Associations with Hospital Length of Stay among Medicare Advantage Members with COVID-19: A Retrospective Cohort Study
par: Kristine Ashcraft, et autres
Publié: (2021) -
COVID-19 pandemic and management on hospital length of stay: A review
par: Fatemeh Abdollahi, et autres
Publié: (2021)