Deep learning predicts postsurgical recurrence of hepatocellular carcinoma from digital histopathologic images
Abstract Recurrence risk stratification of patients undergoing primary surgical resection for hepatocellular carcinoma (HCC) is an area of active investigation, and several staging systems have been proposed to optimize treatment strategies. However, as many as 70% of patients still experience tumor...
Guardado en:
Autores principales: | Rikiya Yamashita, Jin Long, Atif Saleem, Daniel L. Rubin, Jeanne Shen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/28c1b7e83175401e8131ebcd53e2459a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Recurrently deregulated lncRNAs in hepatocellular carcinoma
por: Yang Yang, et al.
Publicado: (2017) -
Association of hospital nursing and postsurgical sepsis.
por: Andrew M Dierkes, et al.
Publicado: (2021) -
Simple parameters predicting extrahepatic recurrence after curative hepatectomy for hepatocellular carcinoma
por: Jae Hyun Yoon, et al.
Publicado: (2021) -
Prediction of early recurrence and response to adjuvant Sorafenib for hepatocellular carcinoma after resection
por: Liming Zheng, et al.
Publicado: (2021) -
Research Progress of Cancer Classification Based on Deep Learning and Histopathological Images
por: YAN Rui, et al.
Publicado: (2021)