Diattenuation and retardance signature of plasmonic gold nanorods in turbid media revealed by Mueller matrix polarimetry
Abstract Plasmonic gold nanorods (GNRs) are finding increasing use in biomedicine due to their unique electromagnetic properties, optical contrast enhancement and biocompatibility; they also show promise as polarization contrast agents. However, quantification of their polarization-enhancing propert...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/28c61f631068485baadfc2f610a4d8c5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:28c61f631068485baadfc2f610a4d8c5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:28c61f631068485baadfc2f610a4d8c52021-12-02T19:16:15ZDiattenuation and retardance signature of plasmonic gold nanorods in turbid media revealed by Mueller matrix polarimetry10.1038/s41598-021-99430-62045-2322https://doaj.org/article/28c61f631068485baadfc2f610a4d8c52021-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-99430-6https://doaj.org/toc/2045-2322Abstract Plasmonic gold nanorods (GNRs) are finding increasing use in biomedicine due to their unique electromagnetic properties, optical contrast enhancement and biocompatibility; they also show promise as polarization contrast agents. However, quantification of their polarization-enhancing properties within heterogeneous turbid media remains challenging. We report on polarization response in controlled tissue phantoms consisting of dielectric microsphere scatterers with varying admixtures of GRNs. Experimental Mueller matrix measurements and polarization sensitive Monte-Carlo simulations show excellent agreement. Despite the GNRs’ 3D random orientation and distribution in the strong multiply scattering background, significant linear diattenuation and retardance were observed. These exclusive measurable characteristics of GNRs suggest their potential uses as contrast enhancers for polarimetric assessment of turbid biological tissue.Subir Kumar RayNirmalya GhoshAlex VitkinNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Subir Kumar Ray Nirmalya Ghosh Alex Vitkin Diattenuation and retardance signature of plasmonic gold nanorods in turbid media revealed by Mueller matrix polarimetry |
description |
Abstract Plasmonic gold nanorods (GNRs) are finding increasing use in biomedicine due to their unique electromagnetic properties, optical contrast enhancement and biocompatibility; they also show promise as polarization contrast agents. However, quantification of their polarization-enhancing properties within heterogeneous turbid media remains challenging. We report on polarization response in controlled tissue phantoms consisting of dielectric microsphere scatterers with varying admixtures of GRNs. Experimental Mueller matrix measurements and polarization sensitive Monte-Carlo simulations show excellent agreement. Despite the GNRs’ 3D random orientation and distribution in the strong multiply scattering background, significant linear diattenuation and retardance were observed. These exclusive measurable characteristics of GNRs suggest their potential uses as contrast enhancers for polarimetric assessment of turbid biological tissue. |
format |
article |
author |
Subir Kumar Ray Nirmalya Ghosh Alex Vitkin |
author_facet |
Subir Kumar Ray Nirmalya Ghosh Alex Vitkin |
author_sort |
Subir Kumar Ray |
title |
Diattenuation and retardance signature of plasmonic gold nanorods in turbid media revealed by Mueller matrix polarimetry |
title_short |
Diattenuation and retardance signature of plasmonic gold nanorods in turbid media revealed by Mueller matrix polarimetry |
title_full |
Diattenuation and retardance signature of plasmonic gold nanorods in turbid media revealed by Mueller matrix polarimetry |
title_fullStr |
Diattenuation and retardance signature of plasmonic gold nanorods in turbid media revealed by Mueller matrix polarimetry |
title_full_unstemmed |
Diattenuation and retardance signature of plasmonic gold nanorods in turbid media revealed by Mueller matrix polarimetry |
title_sort |
diattenuation and retardance signature of plasmonic gold nanorods in turbid media revealed by mueller matrix polarimetry |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/28c61f631068485baadfc2f610a4d8c5 |
work_keys_str_mv |
AT subirkumarray diattenuationandretardancesignatureofplasmonicgoldnanorodsinturbidmediarevealedbymuellermatrixpolarimetry AT nirmalyaghosh diattenuationandretardancesignatureofplasmonicgoldnanorodsinturbidmediarevealedbymuellermatrixpolarimetry AT alexvitkin diattenuationandretardancesignatureofplasmonicgoldnanorodsinturbidmediarevealedbymuellermatrixpolarimetry |
_version_ |
1718376961458307072 |