Arsenic mobilization in shallow aquifers due to CO2 and brine intrusion from storage reservoirs
Abstract We developed an integrated framework of combined batch experiments and reactive transport simulations to quantify water-rock-CO2 interactions and arsenic (As) mobilization responses to CO2 and/or saline water leakage into USDWs. Experimental and simulation results suggest that when CO2 is i...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/28ecd7549a7545dabacfc01bd3212cbe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:28ecd7549a7545dabacfc01bd3212cbe |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:28ecd7549a7545dabacfc01bd3212cbe2021-12-02T16:06:37ZArsenic mobilization in shallow aquifers due to CO2 and brine intrusion from storage reservoirs10.1038/s41598-017-02849-z2045-2322https://doaj.org/article/28ecd7549a7545dabacfc01bd3212cbe2017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02849-zhttps://doaj.org/toc/2045-2322Abstract We developed an integrated framework of combined batch experiments and reactive transport simulations to quantify water-rock-CO2 interactions and arsenic (As) mobilization responses to CO2 and/or saline water leakage into USDWs. Experimental and simulation results suggest that when CO2 is introduced, pH drops immediately that initiates release of As from clay minerals. Calcite dissolution can increase pH slightly and cause As re-adsorption. Thus, the mineralogy of the USDW is ultimately a determining factor of arsenic fate and transport. Salient results suggest that: (1) As desorption/adsorption from/onto clay minerals is the major reaction controlling its mobilization, and clay minerals could mitigate As mobilization with surface complexation reactions; (2) dissolution of available calcite plays a critical role in buffering pH; (3) high salinity in general hinders As release from minerals; and (4) the magnitude and quantitative uncertainty of As mobilization are predicated on the values of reaction rates and surface area of calcite, adsorption surface areas and equilibrium constants of clay minerals, and cation exchange capacity. Results of this study are intended to improve ability to quantify risks associated with potential leakage of reservoir fluids into shallow aquifers, in particular the possible environmental impacts of As mobilization at carbon sequestration sites.Ting XiaoZhenxue DaiHari ViswanathanAlexandra HakalaMartha CatherWei JiaYongchao ZhangBrian McPhersonNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ting Xiao Zhenxue Dai Hari Viswanathan Alexandra Hakala Martha Cather Wei Jia Yongchao Zhang Brian McPherson Arsenic mobilization in shallow aquifers due to CO2 and brine intrusion from storage reservoirs |
description |
Abstract We developed an integrated framework of combined batch experiments and reactive transport simulations to quantify water-rock-CO2 interactions and arsenic (As) mobilization responses to CO2 and/or saline water leakage into USDWs. Experimental and simulation results suggest that when CO2 is introduced, pH drops immediately that initiates release of As from clay minerals. Calcite dissolution can increase pH slightly and cause As re-adsorption. Thus, the mineralogy of the USDW is ultimately a determining factor of arsenic fate and transport. Salient results suggest that: (1) As desorption/adsorption from/onto clay minerals is the major reaction controlling its mobilization, and clay minerals could mitigate As mobilization with surface complexation reactions; (2) dissolution of available calcite plays a critical role in buffering pH; (3) high salinity in general hinders As release from minerals; and (4) the magnitude and quantitative uncertainty of As mobilization are predicated on the values of reaction rates and surface area of calcite, adsorption surface areas and equilibrium constants of clay minerals, and cation exchange capacity. Results of this study are intended to improve ability to quantify risks associated with potential leakage of reservoir fluids into shallow aquifers, in particular the possible environmental impacts of As mobilization at carbon sequestration sites. |
format |
article |
author |
Ting Xiao Zhenxue Dai Hari Viswanathan Alexandra Hakala Martha Cather Wei Jia Yongchao Zhang Brian McPherson |
author_facet |
Ting Xiao Zhenxue Dai Hari Viswanathan Alexandra Hakala Martha Cather Wei Jia Yongchao Zhang Brian McPherson |
author_sort |
Ting Xiao |
title |
Arsenic mobilization in shallow aquifers due to CO2 and brine intrusion from storage reservoirs |
title_short |
Arsenic mobilization in shallow aquifers due to CO2 and brine intrusion from storage reservoirs |
title_full |
Arsenic mobilization in shallow aquifers due to CO2 and brine intrusion from storage reservoirs |
title_fullStr |
Arsenic mobilization in shallow aquifers due to CO2 and brine intrusion from storage reservoirs |
title_full_unstemmed |
Arsenic mobilization in shallow aquifers due to CO2 and brine intrusion from storage reservoirs |
title_sort |
arsenic mobilization in shallow aquifers due to co2 and brine intrusion from storage reservoirs |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/28ecd7549a7545dabacfc01bd3212cbe |
work_keys_str_mv |
AT tingxiao arsenicmobilizationinshallowaquifersduetoco2andbrineintrusionfromstoragereservoirs AT zhenxuedai arsenicmobilizationinshallowaquifersduetoco2andbrineintrusionfromstoragereservoirs AT hariviswanathan arsenicmobilizationinshallowaquifersduetoco2andbrineintrusionfromstoragereservoirs AT alexandrahakala arsenicmobilizationinshallowaquifersduetoco2andbrineintrusionfromstoragereservoirs AT marthacather arsenicmobilizationinshallowaquifersduetoco2andbrineintrusionfromstoragereservoirs AT weijia arsenicmobilizationinshallowaquifersduetoco2andbrineintrusionfromstoragereservoirs AT yongchaozhang arsenicmobilizationinshallowaquifersduetoco2andbrineintrusionfromstoragereservoirs AT brianmcpherson arsenicmobilizationinshallowaquifersduetoco2andbrineintrusionfromstoragereservoirs |
_version_ |
1718384951697604608 |