Presence of heterocyclic amine carcinogens in home-cooked and fast-food camel meat burgers commonly consumed in Saudi Arabia

Abstract Heterocyclic amines (HCAs) are formed by cooking protein-rich foods, for instance, meat and fish, and are listed as possible human carcinogens. In the present study, the presence of five potential HCAs (IQ, MeIQ, MeIQx, 4,8-DiMeIQx, and PhIP) in cooked camel meat burgers was analyzed for th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohammad Rizwan Khan, Mu Naushad, Zeid Abdullah Alothman
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/28ee1dafe4be4c4aab51e7c1bc7ac888
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Heterocyclic amines (HCAs) are formed by cooking protein-rich foods, for instance, meat and fish, and are listed as possible human carcinogens. In the present study, the presence of five potential HCAs (IQ, MeIQ, MeIQx, 4,8-DiMeIQx, and PhIP) in cooked camel meat burgers was analyzed for the first time. The analysis was performed in home-cooked and fast-food burger samples containing food additives. The applied cooking technique for the home-cooked samples was pan frying for a controlled cooking time and temperature. In the control cooked meat samples (samples that contained no food additives), the concentrations of MeIQx, 4,8-DiMeIQx, and PhIP ranged from 2.47 ng/g to 4.89 ng/g, whereas IQ and MeIQ were found to be below the limit of quantification. The concentrations contents of MeIQx, 4,8-DiMeIQx, and PhIP in the home-cooked and fast-food samples ranged from 1.52 ng/g to 2.13 ng/g and 1.85 ng/g to 3.46 ng/g, respectively. IQ and MeIQ were not detected in either type of sample. In comparison to the control samples, the home-cooked and fast-food samples produced lower levels of HCAs. Such observations could result from the existence of antioxidants in incorporated food additives, which induce pro-oxidative effects with the successive formation and/or scavenging of free radicals.