Ultra-fast artificial neuron: generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator

Abstract We demonstrate analytically and numerically, that a thin film of an antiferromagnetic (AFM) material, having biaxial magnetic anisotropy and being driven by an external spin-transfer torque signal, can be used for the generation of ultra-short “Dirac-delta-like” spikes. The duration of the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Roman Khymyn, Ivan Lisenkov, James Voorheis, Olga Sulymenko, Oleksandr Prokopenko, Vasil Tiberkevich, Johan Akerman, Andrei Slavin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/29153fdad5f54ccfa85e888803789734
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:29153fdad5f54ccfa85e888803789734
record_format dspace
spelling oai:doaj.org-article:29153fdad5f54ccfa85e8888037897342021-12-02T15:09:06ZUltra-fast artificial neuron: generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator10.1038/s41598-018-33697-02045-2322https://doaj.org/article/29153fdad5f54ccfa85e8888037897342018-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-33697-0https://doaj.org/toc/2045-2322Abstract We demonstrate analytically and numerically, that a thin film of an antiferromagnetic (AFM) material, having biaxial magnetic anisotropy and being driven by an external spin-transfer torque signal, can be used for the generation of ultra-short “Dirac-delta-like” spikes. The duration of the generated spikes is several picoseconds for typical AFM materials and is determined by the inplane magnetic anisotropy and the effective damping of the AFM material. The generated output signal can consist of a single spike or a discrete group of spikes (“bursting”), which depends on the repetition (clock) rate, amplitude, and shape of the external control signal. The spike generation occurs only when the amplitude of the control signal exceeds a certain threshold, similar to the action of a biological neuron in response to an external stimulus. The “threshold” behavior of the proposed AFM spike generator makes possible its application not only in the traditional microwave signal processing but also in the future neuromorphic signal processing circuits working at clock frequencies of tens of gigahertz.Roman KhymynIvan LisenkovJames VoorheisOlga SulymenkoOleksandr ProkopenkoVasil TiberkevichJohan AkermanAndrei SlavinNature PortfolioarticleBiaxial Magnetic AnisotropySpike GenerationNeel VectorSlave NeuronInverse Shear (ISHE)MedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-9 (2018)
institution DOAJ
collection DOAJ
language EN
topic Biaxial Magnetic Anisotropy
Spike Generation
Neel Vector
Slave Neuron
Inverse Shear (ISHE)
Medicine
R
Science
Q
spellingShingle Biaxial Magnetic Anisotropy
Spike Generation
Neel Vector
Slave Neuron
Inverse Shear (ISHE)
Medicine
R
Science
Q
Roman Khymyn
Ivan Lisenkov
James Voorheis
Olga Sulymenko
Oleksandr Prokopenko
Vasil Tiberkevich
Johan Akerman
Andrei Slavin
Ultra-fast artificial neuron: generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator
description Abstract We demonstrate analytically and numerically, that a thin film of an antiferromagnetic (AFM) material, having biaxial magnetic anisotropy and being driven by an external spin-transfer torque signal, can be used for the generation of ultra-short “Dirac-delta-like” spikes. The duration of the generated spikes is several picoseconds for typical AFM materials and is determined by the inplane magnetic anisotropy and the effective damping of the AFM material. The generated output signal can consist of a single spike or a discrete group of spikes (“bursting”), which depends on the repetition (clock) rate, amplitude, and shape of the external control signal. The spike generation occurs only when the amplitude of the control signal exceeds a certain threshold, similar to the action of a biological neuron in response to an external stimulus. The “threshold” behavior of the proposed AFM spike generator makes possible its application not only in the traditional microwave signal processing but also in the future neuromorphic signal processing circuits working at clock frequencies of tens of gigahertz.
format article
author Roman Khymyn
Ivan Lisenkov
James Voorheis
Olga Sulymenko
Oleksandr Prokopenko
Vasil Tiberkevich
Johan Akerman
Andrei Slavin
author_facet Roman Khymyn
Ivan Lisenkov
James Voorheis
Olga Sulymenko
Oleksandr Prokopenko
Vasil Tiberkevich
Johan Akerman
Andrei Slavin
author_sort Roman Khymyn
title Ultra-fast artificial neuron: generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator
title_short Ultra-fast artificial neuron: generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator
title_full Ultra-fast artificial neuron: generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator
title_fullStr Ultra-fast artificial neuron: generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator
title_full_unstemmed Ultra-fast artificial neuron: generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator
title_sort ultra-fast artificial neuron: generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/29153fdad5f54ccfa85e888803789734
work_keys_str_mv AT romankhymyn ultrafastartificialneurongenerationofpicoseconddurationspikesinacurrentdrivenantiferromagneticautooscillator
AT ivanlisenkov ultrafastartificialneurongenerationofpicoseconddurationspikesinacurrentdrivenantiferromagneticautooscillator
AT jamesvoorheis ultrafastartificialneurongenerationofpicoseconddurationspikesinacurrentdrivenantiferromagneticautooscillator
AT olgasulymenko ultrafastartificialneurongenerationofpicoseconddurationspikesinacurrentdrivenantiferromagneticautooscillator
AT oleksandrprokopenko ultrafastartificialneurongenerationofpicoseconddurationspikesinacurrentdrivenantiferromagneticautooscillator
AT vasiltiberkevich ultrafastartificialneurongenerationofpicoseconddurationspikesinacurrentdrivenantiferromagneticautooscillator
AT johanakerman ultrafastartificialneurongenerationofpicoseconddurationspikesinacurrentdrivenantiferromagneticautooscillator
AT andreislavin ultrafastartificialneurongenerationofpicoseconddurationspikesinacurrentdrivenantiferromagneticautooscillator
_version_ 1718387927239622656