Tree-based machine learning performed in-memory with memristive analog CAM
Tree-based machine learning algorithms are known to be explainable and effective even trained on limited datasets, however difficult to optimize on conventional digital hardware. The authors apply analog content addressable memory to accelerate tree-based model inference for improved performance.
Enregistré dans:
Auteurs principaux: | Giacomo Pedretti, Catherine E. Graves, Sergey Serebryakov, Ruibin Mao, Xia Sheng, Martin Foltin, Can Li, John Paul Strachan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/2918fbbcb63643d0ba6ac994f9f06593 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Analog content-addressable memories with memristors
par: Can Li, et autres
Publié: (2020) -
Redox gated polymer memristive processing memory unit
par: Bin Zhang, et autres
Publié: (2019) -
Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity
par: G. Pedretti, et autres
Publié: (2017) -
Is the link from working memory to analogy causal? No analogy improvements following working memory training gains.
par: J Elizabeth Richey, et autres
Publié: (2014) -
Neuromorphic computing with multi-memristive synapses
par: Irem Boybat, et autres
Publié: (2018)