Tree-based machine learning performed in-memory with memristive analog CAM
Tree-based machine learning algorithms are known to be explainable and effective even trained on limited datasets, however difficult to optimize on conventional digital hardware. The authors apply analog content addressable memory to accelerate tree-based model inference for improved performance.
Guardado en:
Autores principales: | Giacomo Pedretti, Catherine E. Graves, Sergey Serebryakov, Ruibin Mao, Xia Sheng, Martin Foltin, Can Li, John Paul Strachan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2918fbbcb63643d0ba6ac994f9f06593 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Analog content-addressable memories with memristors
por: Can Li, et al.
Publicado: (2020) -
Redox gated polymer memristive processing memory unit
por: Bin Zhang, et al.
Publicado: (2019) -
Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity
por: G. Pedretti, et al.
Publicado: (2017) -
Is the link from working memory to analogy causal? No analogy improvements following working memory training gains.
por: J Elizabeth Richey, et al.
Publicado: (2014) -
Neuromorphic computing with multi-memristive synapses
por: Irem Boybat, et al.
Publicado: (2018)