Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling
Abstract Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-pl...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2931868d089f48b090835e8b4fd95236 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2931868d089f48b090835e8b4fd95236 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2931868d089f48b090835e8b4fd952362021-12-02T11:40:14ZPlasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling10.1038/s41598-017-03305-82045-2322https://doaj.org/article/2931868d089f48b090835e8b4fd952362017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-03305-8https://doaj.org/toc/2045-2322Abstract Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mode supported by an organo-metallic array and molecular excitons in the form of J-aggregates dispersed on the hybrid structure. We observe experimentally the transition from a conventional strong coupling regime exhibiting the usual upper and lower polaritonic branches to a more complex regime, where a third nondispersive mode is seen, as the concentration of J-aggregates is increased. The numerical simulations confirm the presence of the third resonance. We attribute its physical nature to collective molecule-molecule interactions leading to a collective electromagnetic response. A simple analytical model is proposed to explain the physics of the third mode. The nonlinear dependence on molecular parameters followed from the model are confirmed in a set of rigorous numerical studies. It is shown that at the energy of the collective mode molecules oscillate completely out of phase with the incident radiation acting as an effictive thin metal layer.Pierre FauchéChristian GebhardtMaxim SukharevRenaud A. L. ValléeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Pierre Fauché Christian Gebhardt Maxim Sukharev Renaud A. L. Vallée Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling |
description |
Abstract Achieving and controlling strong light-matter interactions in many-body systems is of paramount importance both for fundamental understanding and potential applications. In this paper we demonstrate both experimentally and theoretically how to manipulate strong coupling between the Bragg-plasmon mode supported by an organo-metallic array and molecular excitons in the form of J-aggregates dispersed on the hybrid structure. We observe experimentally the transition from a conventional strong coupling regime exhibiting the usual upper and lower polaritonic branches to a more complex regime, where a third nondispersive mode is seen, as the concentration of J-aggregates is increased. The numerical simulations confirm the presence of the third resonance. We attribute its physical nature to collective molecule-molecule interactions leading to a collective electromagnetic response. A simple analytical model is proposed to explain the physics of the third mode. The nonlinear dependence on molecular parameters followed from the model are confirmed in a set of rigorous numerical studies. It is shown that at the energy of the collective mode molecules oscillate completely out of phase with the incident radiation acting as an effictive thin metal layer. |
format |
article |
author |
Pierre Fauché Christian Gebhardt Maxim Sukharev Renaud A. L. Vallée |
author_facet |
Pierre Fauché Christian Gebhardt Maxim Sukharev Renaud A. L. Vallée |
author_sort |
Pierre Fauché |
title |
Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling |
title_short |
Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling |
title_full |
Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling |
title_fullStr |
Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling |
title_full_unstemmed |
Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling |
title_sort |
plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/2931868d089f48b090835e8b4fd95236 |
work_keys_str_mv |
AT pierrefauche plasmonicopalsobservationofacollectivemolecularexcitonmodebeyondthestrongcoupling AT christiangebhardt plasmonicopalsobservationofacollectivemolecularexcitonmodebeyondthestrongcoupling AT maximsukharev plasmonicopalsobservationofacollectivemolecularexcitonmodebeyondthestrongcoupling AT renaudalvallee plasmonicopalsobservationofacollectivemolecularexcitonmodebeyondthestrongcoupling |
_version_ |
1718395631177826304 |