Achieving broad absorption band and high incident angles by stochastically-distributed oblique-flat-sheet metamaterial perfect absorbers
Abstract In this work, we integrated a periodic seed layer and oblique deposition method to fabricate a stochastically-distributed oblique-flat-sheet metamaterial perfect absorber (MPA). Such design could increase its absorption bandwidth and tolerance to high angle-incidence due to the fact that va...
Saved in:
Main Authors: | , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/2934a7d748e84c74928b5f9faa964921 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract In this work, we integrated a periodic seed layer and oblique deposition method to fabricate a stochastically-distributed oblique-flat-sheet metamaterial perfect absorber (MPA). Such design could increase its absorption bandwidth and tolerance to high angle-incidence due to the fact that various oblique flat sheets offer different resonance conditions while even a single oblique flat sheet could provide different optical paths for resonance. On the other hand, a seed layer could reduce uncertainty regarding to direct oblique deposition and provide abilities to manipulate the bandwidth of the MPA. We also setup a simulation model in the aids of Visual Basic Application and examined the absorption behavior of the MPA under TM and TE oblique incidence that could achieve high absorbance under 80° and 60° incidence, respectively. Finally, in measurement, the fabricated sample owns 65% absorbance within 80–250 THz and over 90% absorbance within 250–320 THz at x-polarization normal incidence; as for the y-polarization normal incidence, we could achieve overall 70% absorbance within 80–300 THz. The measured results reveal similar tendency compared to the simulated ones. |
---|