Decoding the molecular subtypes of breast cancer seen on multimodal ultrasound images using an assembled convolutional neural network model: A prospective and multicentre study
Background: Preoperative determination of breast cancer molecular subtypes facilitates individualized treatment plan-making and improves patient prognosis. We aimed to develop an assembled convolutional neural network (ACNN) model for the preoperative prediction of molecular subtypes using multimoda...
Enregistré dans:
Auteurs principaux: | Bo-Yang Zhou, Li-Fan Wang, Hao-Hao Yin, Ting-Fan Wu, Tian-Tian Ren, Chuan Peng, De-Xuan Li, Hui Shi, Li-Ping Sun, Chong-Ke Zhao, Hui-Xiong Xu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/29369f25cc1f4b5fa9bd98e9c1b2f059 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
AN ENHANCED MULTIMODAL BIOMETRIC SYSTEM BASED ON CONVOLUTIONAL NEURAL NETWORK
par: LAWRENCE OMOTOSHO, et autres
Publié: (2021) -
Fus2Net: a novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images
par: He Ma, et autres
Publié: (2021) -
Identification of Methylation Immune Subtypes and Establishment of a Prognostic Signature for Gliomas Using Immune-Related Genes
par: Zhengang Hu, et autres
Publié: (2021) -
Contenido del documento de transporte multimodal internacional = Contents of the international multimodal transport document
Publié: (2014) -
Comparison of Analgesic Efficacy of Erector Spinae and Oblique Subcostal Transverse Abdominis Plane Block in Laparoscopic Cholecystectomy
par: Lingaraj Sahu, et autres
Publié: (2021)