Effects of ambient particulate matter on a reconstructed human corneal epithelium model

Abstract We evaluated the effects of ambient particulate matter (PM) on the corneal epithelium using a reconstructed human corneal epithelium (HCE) model. We collected two PM size fractions [aerodynamic diameter smaller than 2.4 µm: PM0.3–2.4 and larger than 2.4 µm: PM>2.4] and exposed these tiss...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ryota Ko, Masahiko Hayashi, Miho Tanaka, Tomoaki Okuda, Chiharu Nishita-Hara, Hiroaki Ozaki, Eiichi Uchio
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/294b4fb48b514d94986a3857cf971493
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We evaluated the effects of ambient particulate matter (PM) on the corneal epithelium using a reconstructed human corneal epithelium (HCE) model. We collected two PM size fractions [aerodynamic diameter smaller than 2.4 µm: PM0.3–2.4 and larger than 2.4 µm: PM>2.4] and exposed these tissues to PM concentrations of 1, 10, and 100 µg/mL for 24 h. After exposure, cell viability and interleukin (IL) IL-6 and IL-8 levels were determined, and haematoxylin and eosin and immunofluorescence staining of the zonula occludens-1 (ZO-1) were performed on tissue sections. In addition, the effects of a certified reference material of urban aerosols (UA; 100 µg/mL) were also examined as a reference. The viability of cells exposed to 100 μg/mL UA and PM>2.4 decreased to 76.2% ± 7.4 and 75.4% ± 16.1, respectively, whereas PM0.3–2.4 exposure had a limited effect on cell viability. These particles did not increase IL-6 and IL-8 levels significantly even though cell viability was decreased in 100 μg/mL UA and PM>2.4. ZO-1 expression was reduced in a dose-dependent manner in all groups. Reconstructed HCE could be used as an in vitro model to study the effects of environmental PM exposure on ocular surface cell viability and inflammation.