Prediction of COVID-19 epidemic situation via fine-tuned IndRNN
The COVID-19 pandemic is the most serious catastrophe since the Second World War. To predict the epidemic more accurately under the influence of policies, a framework based on Independently Recurrent Neural Network (IndRNN) with fine-tuning are proposed for predict the epidemic development trend of...
Guardado en:
Autores principales: | Zhonghua Hong, Ziyang Fan, Xiaohua Tong, Ruyan Zhou, Haiyan Pan, Yun Zhang, Yanling Han, Jing Wang, Shuhu Yang, Hong Wu, Jiahao Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/29562d9c71404cce9b11fd09ac22caaf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Use of Tuned Mass Dampers in Controlling the Vibrations of Steel Structures with Vertical Irregularity of Mass
por: Mehdi Babaei, et al.
Publicado: (2018) -
Investigation of the Computational Burden Effects of Self-Tuning Fuzzy Logic Speed Controller of Induction Motor Drives With Different Rules Sizes
por: Nabil Farah, et al.
Publicado: (2021) -
New Trends in Sound Synthesis and Automatic Tuning of Electronic Musical Instruments
por: Aguilar,Juan R., et al.
Publicado: (2003) -
Forecasting of Sea Level Time Series using RNN and LSTM Case Study in Sunda Strait
por: Annas Wahyu Ramadhan, et al.
Publicado: (2021) -
Thermal near-field tuning of silicon Mie nanoparticles
por: Assadillayev Artyom, et al.
Publicado: (2021)