Mid-pass whole genome sequencing enables biomedical genetic studies of diverse populations
Abstract Background Historically, geneticists have relied on genotyping arrays and imputation to study human genetic variation. However, an underrepresentation of diverse populations has resulted in arrays that poorly capture global genetic variation, and a lack of reference panels. This has contrib...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/295efebb8290477c8a164ca0f7d5bfec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:295efebb8290477c8a164ca0f7d5bfec |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:295efebb8290477c8a164ca0f7d5bfec2021-11-08T10:57:36ZMid-pass whole genome sequencing enables biomedical genetic studies of diverse populations10.1186/s12864-021-07949-91471-2164https://doaj.org/article/295efebb8290477c8a164ca0f7d5bfec2021-11-01T00:00:00Zhttps://doi.org/10.1186/s12864-021-07949-9https://doaj.org/toc/1471-2164Abstract Background Historically, geneticists have relied on genotyping arrays and imputation to study human genetic variation. However, an underrepresentation of diverse populations has resulted in arrays that poorly capture global genetic variation, and a lack of reference panels. This has contributed to deepening global health disparities. Whole genome sequencing (WGS) better captures genetic variation but remains prohibitively expensive. Thus, we explored WGS at “mid-pass” 1-7x coverage. Results Here, we developed and benchmarked methods for mid-pass sequencing. When applied to a population without an existing genomic reference panel, 4x mid-pass performed consistently well across ethnicities, with high recall (98%) and precision (97.5%). Conclusion Compared to array data imputed into 1000 Genomes, mid-pass performed better across all metrics and identified novel population-specific variants with potential disease relevance. We hope our work will reduce financial barriers for geneticists from underrepresented populations to characterize their genomes prior to biomedical genetic applications.Anne-Katrin EmdeAmanda Phipps-GreenMurray CadzowC. Scott GallagherTanya J. MajorMarilyn E. MerrimanRuth K. ToplessRiku TakeiNicola DalbethRinki MurphyLisa K. StampJanak de ZoysaPhilip L. WilcoxKeolu FoxKaja A. WasikTony R. MerrimanStephane E. CastelBMCarticleBiotechnologyTP248.13-248.65GeneticsQH426-470ENBMC Genomics, Vol 22, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biotechnology TP248.13-248.65 Genetics QH426-470 |
spellingShingle |
Biotechnology TP248.13-248.65 Genetics QH426-470 Anne-Katrin Emde Amanda Phipps-Green Murray Cadzow C. Scott Gallagher Tanya J. Major Marilyn E. Merriman Ruth K. Topless Riku Takei Nicola Dalbeth Rinki Murphy Lisa K. Stamp Janak de Zoysa Philip L. Wilcox Keolu Fox Kaja A. Wasik Tony R. Merriman Stephane E. Castel Mid-pass whole genome sequencing enables biomedical genetic studies of diverse populations |
description |
Abstract Background Historically, geneticists have relied on genotyping arrays and imputation to study human genetic variation. However, an underrepresentation of diverse populations has resulted in arrays that poorly capture global genetic variation, and a lack of reference panels. This has contributed to deepening global health disparities. Whole genome sequencing (WGS) better captures genetic variation but remains prohibitively expensive. Thus, we explored WGS at “mid-pass” 1-7x coverage. Results Here, we developed and benchmarked methods for mid-pass sequencing. When applied to a population without an existing genomic reference panel, 4x mid-pass performed consistently well across ethnicities, with high recall (98%) and precision (97.5%). Conclusion Compared to array data imputed into 1000 Genomes, mid-pass performed better across all metrics and identified novel population-specific variants with potential disease relevance. We hope our work will reduce financial barriers for geneticists from underrepresented populations to characterize their genomes prior to biomedical genetic applications. |
format |
article |
author |
Anne-Katrin Emde Amanda Phipps-Green Murray Cadzow C. Scott Gallagher Tanya J. Major Marilyn E. Merriman Ruth K. Topless Riku Takei Nicola Dalbeth Rinki Murphy Lisa K. Stamp Janak de Zoysa Philip L. Wilcox Keolu Fox Kaja A. Wasik Tony R. Merriman Stephane E. Castel |
author_facet |
Anne-Katrin Emde Amanda Phipps-Green Murray Cadzow C. Scott Gallagher Tanya J. Major Marilyn E. Merriman Ruth K. Topless Riku Takei Nicola Dalbeth Rinki Murphy Lisa K. Stamp Janak de Zoysa Philip L. Wilcox Keolu Fox Kaja A. Wasik Tony R. Merriman Stephane E. Castel |
author_sort |
Anne-Katrin Emde |
title |
Mid-pass whole genome sequencing enables biomedical genetic studies of diverse populations |
title_short |
Mid-pass whole genome sequencing enables biomedical genetic studies of diverse populations |
title_full |
Mid-pass whole genome sequencing enables biomedical genetic studies of diverse populations |
title_fullStr |
Mid-pass whole genome sequencing enables biomedical genetic studies of diverse populations |
title_full_unstemmed |
Mid-pass whole genome sequencing enables biomedical genetic studies of diverse populations |
title_sort |
mid-pass whole genome sequencing enables biomedical genetic studies of diverse populations |
publisher |
BMC |
publishDate |
2021 |
url |
https://doaj.org/article/295efebb8290477c8a164ca0f7d5bfec |
work_keys_str_mv |
AT annekatrinemde midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT amandaphippsgreen midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT murraycadzow midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT cscottgallagher midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT tanyajmajor midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT marilynemerriman midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT ruthktopless midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT rikutakei midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT nicoladalbeth midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT rinkimurphy midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT lisakstamp midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT janakdezoysa midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT philiplwilcox midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT keolufox midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT kajaawasik midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT tonyrmerriman midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations AT stephaneecastel midpasswholegenomesequencingenablesbiomedicalgeneticstudiesofdiversepopulations |
_version_ |
1718442406966198272 |