A merged molecular representation learning for molecular properties prediction with a web-based service
Abstract Deep learning has brought a dramatic development in molecular property prediction that is crucial in the field of drug discovery using various representations such as fingerprints, SMILES, and graphs. In particular, SMILES is used in various deep learning models via character-based approach...
Guardado en:
Autores principales: | Hyunseob Kim, Jeongcheol Lee, Sunil Ahn, Jongsuk Ruth Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2993cc3aff2243a397e8e03b895d819d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting materials properties without crystal structure: deep representation learning from stoichiometry
por: Rhys E. A. Goodall, et al.
Publicado: (2020) -
Representation of molecular structures with persistent homology for machine learning applications in chemistry
por: Jacob Townsend, et al.
Publicado: (2020) -
Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning
por: Bharat Medasani, et al.
Publicado: (2016) -
Predicting Popularity of Video Streaming Services with Representation Learning: A Survey and a Real-World Case Study
por: Sidney Loyola de Sá, et al.
Publicado: (2021) -
Author Correction: Representation of molecular structures with persistent homology for machine learning applications in chemistry
por: Jacob Townsend, et al.
Publicado: (2020)