Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma

Abstract Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Leland S. Hu, Lujia Wang, Andrea Hawkins-Daarud, Jennifer M. Eschbacher, Kyle W. Singleton, Pamela R. Jackson, Kamala Clark-Swanson, Christopher P. Sereduk, Sen Peng, Panwen Wang, Junwen Wang, Leslie C. Baxter, Kris A. Smith, Gina L. Mazza, Ashley M. Stokes, Bernard R. Bendok, Richard S. Zimmerman, Chandan Krishna, Alyx B. Porter, Maciej M. Mrugala, Joseph M. Hoxworth, Teresa Wu, Nhan L. Tran, Kristin R. Swanson, Jing Li
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/29a1d68a17774a75aedf2ebb89547a04
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:29a1d68a17774a75aedf2ebb89547a04
record_format dspace
spelling oai:doaj.org-article:29a1d68a17774a75aedf2ebb89547a042021-12-02T12:11:50ZUncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma10.1038/s41598-021-83141-z2045-2322https://doaj.org/article/29a1d68a17774a75aedf2ebb89547a042021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83141-zhttps://doaj.org/toc/2045-2322Abstract Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target in GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor—a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making.Leland S. HuLujia WangAndrea Hawkins-DaarudJennifer M. EschbacherKyle W. SingletonPamela R. JacksonKamala Clark-SwansonChristopher P. SeredukSen PengPanwen WangJunwen WangLeslie C. BaxterKris A. SmithGina L. MazzaAshley M. StokesBernard R. BendokRichard S. ZimmermanChandan KrishnaAlyx B. PorterMaciej M. MrugalaJoseph M. HoxworthTeresa WuNhan L. TranKristin R. SwansonJing LiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Leland S. Hu
Lujia Wang
Andrea Hawkins-Daarud
Jennifer M. Eschbacher
Kyle W. Singleton
Pamela R. Jackson
Kamala Clark-Swanson
Christopher P. Sereduk
Sen Peng
Panwen Wang
Junwen Wang
Leslie C. Baxter
Kris A. Smith
Gina L. Mazza
Ashley M. Stokes
Bernard R. Bendok
Richard S. Zimmerman
Chandan Krishna
Alyx B. Porter
Maciej M. Mrugala
Joseph M. Hoxworth
Teresa Wu
Nhan L. Tran
Kristin R. Swanson
Jing Li
Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
description Abstract Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target in GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor—a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making.
format article
author Leland S. Hu
Lujia Wang
Andrea Hawkins-Daarud
Jennifer M. Eschbacher
Kyle W. Singleton
Pamela R. Jackson
Kamala Clark-Swanson
Christopher P. Sereduk
Sen Peng
Panwen Wang
Junwen Wang
Leslie C. Baxter
Kris A. Smith
Gina L. Mazza
Ashley M. Stokes
Bernard R. Bendok
Richard S. Zimmerman
Chandan Krishna
Alyx B. Porter
Maciej M. Mrugala
Joseph M. Hoxworth
Teresa Wu
Nhan L. Tran
Kristin R. Swanson
Jing Li
author_facet Leland S. Hu
Lujia Wang
Andrea Hawkins-Daarud
Jennifer M. Eschbacher
Kyle W. Singleton
Pamela R. Jackson
Kamala Clark-Swanson
Christopher P. Sereduk
Sen Peng
Panwen Wang
Junwen Wang
Leslie C. Baxter
Kris A. Smith
Gina L. Mazza
Ashley M. Stokes
Bernard R. Bendok
Richard S. Zimmerman
Chandan Krishna
Alyx B. Porter
Maciej M. Mrugala
Joseph M. Hoxworth
Teresa Wu
Nhan L. Tran
Kristin R. Swanson
Jing Li
author_sort Leland S. Hu
title Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
title_short Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
title_full Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
title_fullStr Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
title_full_unstemmed Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma
title_sort uncertainty quantification in the radiogenomics modeling of egfr amplification in glioblastoma
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/29a1d68a17774a75aedf2ebb89547a04
work_keys_str_mv AT lelandshu uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT lujiawang uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT andreahawkinsdaarud uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT jennifermeschbacher uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT kylewsingleton uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT pamelarjackson uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT kamalaclarkswanson uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT christopherpsereduk uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT senpeng uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT panwenwang uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT junwenwang uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT lesliecbaxter uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT krisasmith uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT ginalmazza uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT ashleymstokes uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT bernardrbendok uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT richardszimmerman uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT chandankrishna uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT alyxbporter uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT maciejmmrugala uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT josephmhoxworth uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT teresawu uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT nhanltran uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT kristinrswanson uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
AT jingli uncertaintyquantificationintheradiogenomicsmodelingofegframplificationinglioblastoma
_version_ 1718394562083291136