Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma

Abstract Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Leland S. Hu, Lujia Wang, Andrea Hawkins-Daarud, Jennifer M. Eschbacher, Kyle W. Singleton, Pamela R. Jackson, Kamala Clark-Swanson, Christopher P. Sereduk, Sen Peng, Panwen Wang, Junwen Wang, Leslie C. Baxter, Kris A. Smith, Gina L. Mazza, Ashley M. Stokes, Bernard R. Bendok, Richard S. Zimmerman, Chandan Krishna, Alyx B. Porter, Maciej M. Mrugala, Joseph M. Hoxworth, Teresa Wu, Nhan L. Tran, Kristin R. Swanson, Jing Li
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/29a1d68a17774a75aedf2ebb89547a04
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares