Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma

Abstract Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical d...

Full description

Saved in:
Bibliographic Details
Main Authors: Leland S. Hu, Lujia Wang, Andrea Hawkins-Daarud, Jennifer M. Eschbacher, Kyle W. Singleton, Pamela R. Jackson, Kamala Clark-Swanson, Christopher P. Sereduk, Sen Peng, Panwen Wang, Junwen Wang, Leslie C. Baxter, Kris A. Smith, Gina L. Mazza, Ashley M. Stokes, Bernard R. Bendok, Richard S. Zimmerman, Chandan Krishna, Alyx B. Porter, Maciej M. Mrugala, Joseph M. Hoxworth, Teresa Wu, Nhan L. Tran, Kristin R. Swanson, Jing Li
Format: article
Language:EN
Published: Nature Portfolio 2021
Subjects:
R
Q
Online Access:https://doaj.org/article/29a1d68a17774a75aedf2ebb89547a04
Tags: Add Tag
No Tags, Be the first to tag this record!