Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma

Abstract Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical d...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Leland S. Hu, Lujia Wang, Andrea Hawkins-Daarud, Jennifer M. Eschbacher, Kyle W. Singleton, Pamela R. Jackson, Kamala Clark-Swanson, Christopher P. Sereduk, Sen Peng, Panwen Wang, Junwen Wang, Leslie C. Baxter, Kris A. Smith, Gina L. Mazza, Ashley M. Stokes, Bernard R. Bendok, Richard S. Zimmerman, Chandan Krishna, Alyx B. Porter, Maciej M. Mrugala, Joseph M. Hoxworth, Teresa Wu, Nhan L. Tran, Kristin R. Swanson, Jing Li
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/29a1d68a17774a75aedf2ebb89547a04
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!