Protocol for assessment of the efficiency of CRISPR/Cas RNP delivery to different types of target cells
<h4>Background</h4> Delivery of CRISPR/Cas RNPs to target cells still remains the biggest bottleneck to genome editing. Many efforts are made to develop efficient CRISPR/Cas RNP delivery methods that will not affect viability of target cell dramatically. Popular current methods and proto...
Saved in:
Main Authors: | , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Public Library of Science (PLoS)
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/29be6d3838f34a0492e637a62af0d06e |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | <h4>Background</h4> Delivery of CRISPR/Cas RNPs to target cells still remains the biggest bottleneck to genome editing. Many efforts are made to develop efficient CRISPR/Cas RNP delivery methods that will not affect viability of target cell dramatically. Popular current methods and protocols of CRISPR/Cas RNP delivery include lipofection and electroporation, transduction by osmocytosis and reversible permeabilization and erythrocyte-based methods. <h4>Methods</h4> In this study we will assess the efficiency and optimize current CRISPR/Cas RNP delivery protocols to target cells. We will conduct our work using molecular cloning, protein expression and purification, cell culture, flow cytometry (immunocytochemistry) and cellular imaging techniques. <h4>Discussion</h4> This will be the first extensive comparative study of popular current methods and protocols of CRISPR/Cas RNP delivery to human cell lines and primary cells. All protocols will be optimized and characterized using the following criteria i) protein delivery and genome editing efficacy; ii) viability of target cells after delivery (post-transduction recovery); iii) scalability of delivery process; iv) cost-effectiveness of the delivery process and v) intellectual property rights. Some methods will be considered ‘research-use only’, others will be recommended for scaling and application in the development of cell-based therapies. |
---|