Large voltage-induced coercivity change in Pt/Co/CoO/amorphous TiO x structure and heavy metal insertion effect
Abstract There is urgent need for spintronics materials exhibiting a large voltage modulation effect to fulfill the great demand for high-speed, low-power-consumption information processing systems. Fcc-Co (111)-based systems are a promising option for research on the voltage effect, on account of t...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/29c5e36d0e88492e99d10058fe2df4f1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract There is urgent need for spintronics materials exhibiting a large voltage modulation effect to fulfill the great demand for high-speed, low-power-consumption information processing systems. Fcc-Co (111)-based systems are a promising option for research on the voltage effect, on account of their large perpendicular magnetic anisotropy (PMA) and high degree of freedom in structure. Aiming to observe a large voltage effect in a fcc-Co (111)-based system at room temperature, we investigated the voltage-induced coercivity (H c) change of perpendicularly magnetized Pt/heavy metal/Co/CoO/amorphous TiO x structures. The thin CoO layer in the structure was the result of the surface oxidation of Co. We observed a large voltage-induced H c change of 20.2 mT by applying 2 V (0.32 V/nm) to a sample without heavy metal insertion, and an H c change of 15.4 mT by applying 1.8 V (0.29 V/nm) to an Ir-inserted sample. The relative thick Co thickness, Co surface oxidation, and large dielectric constant of TiO x layer could be related to the large voltage-induced H c change. Furthermore, we demonstrated the separate adjustment of H c and a voltage-induced H c change by utilizing both upper and lower interfaces of Co. |
---|