Neural network reactive force field for C, H, N, and O systems
Abstract Reactive force fields have enabled an atomic level description of a wide range of phenomena, from chemistry at extreme conditions to the operation of electrochemical devices and catalysis. While significant insight and semi-quantitative understanding have been drawn from such work, the accu...
Guardado en:
Autores principales: | Pilsun Yoo, Michael Sakano, Saaketh Desai, Md Mahbubul Islam, Peilin Liao, Alejandro Strachan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/29cd9e0fc0e54e598944fa305adc4586 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture
por: Cheol Woo Park, et al.
Publicado: (2021) -
Exploiting the quantum mechanically derived force field for functional materials simulations
por: Alexey Odinokov, et al.
Publicado: (2021) -
Reactive pathways toward parasitic release of singlet oxygen in metal-air batteries
por: Adriano Pierini, et al.
Publicado: (2021) -
Low-dimensional non-metal catalysts: principles for regulating p-orbital-dominated reactivity
por: Si Zhou, et al.
Publicado: (2021) -
Bayesian force fields from active learning for simulation of inter-dimensional transformation of stanene
por: Yu Xie, et al.
Publicado: (2021)