Nonparametric Multivariate Density Estimation: Case Study of Cauchy Mixture Model
Estimation of probability density functions (pdf) is considered an essential part of statistical modelling. Heteroskedasticity and outliers are the problems that make data analysis harder. The Cauchy mixture model helps us to cover both of them. This paper studies five different significant types of...
Guardado en:
Autores principales: | Tomas Ruzgas, Mantas Lukauskas, Gedmantas Čepkauskas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/29e6646bad8844408950269b9d70d474 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Analysis of the Operation of Distribution Networks Using Kernel Density Estimators
por: Mirosław Kornatka, et al.
Publicado: (2021) -
Nonparametric Correlative-Probabilistic Microgrid Power Energy Management Based Sine-Cosine Algorithm
por: Soheil Moradi Nezhad, et al.
Publicado: (2021) -
Why so many apparently rare beetles in Chilean temperate rainforests?
por: RICHARDSON,BARRY J, et al.
Publicado: (2011) -
Tr(R2) control charts based on kernel density estimation for monitoring multivariate variability process
por: Muhammad Mashuri, et al.
Publicado: (2019) -
Descriptive and Multivariate Analysis of the Pig Sector in North Macedonia and Its Implications for African Swine Fever Transmission
por: Kathleen C. O'Hara, et al.
Publicado: (2021)