Machine learning approaches to predict gestational age in normal and complicated pregnancies via urinary metabolomics analysis

Abstract The elucidation of dynamic metabolomic changes during gestation is particularly important for the development of methods to evaluate pregnancy status or achieve earlier detection of pregnancy-related complications. Some studies have constructed models to evaluate pregnancy status and predic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Takafumi Yamauchi, Daisuke Ochi, Naomi Matsukawa, Daisuke Saigusa, Mami Ishikuro, Taku Obara, Yoshiki Tsunemoto, Satsuki Kumatani, Riu Yamashita, Osamu Tanabe, Naoko Minegishi, Seizo Koshiba, Hirohito Metoki, Shinichi Kuriyama, Nobuo Yaegashi, Masayuki Yamamoto, Masao Nagasaki, Satoshi Hiyama, Junichi Sugawara
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/29fb6bbfa97f4ccc98f20c973417a67f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:29fb6bbfa97f4ccc98f20c973417a67f
record_format dspace
spelling oai:doaj.org-article:29fb6bbfa97f4ccc98f20c973417a67f2021-12-02T17:41:18ZMachine learning approaches to predict gestational age in normal and complicated pregnancies via urinary metabolomics analysis10.1038/s41598-021-97342-z2045-2322https://doaj.org/article/29fb6bbfa97f4ccc98f20c973417a67f2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-97342-zhttps://doaj.org/toc/2045-2322Abstract The elucidation of dynamic metabolomic changes during gestation is particularly important for the development of methods to evaluate pregnancy status or achieve earlier detection of pregnancy-related complications. Some studies have constructed models to evaluate pregnancy status and predict gestational age using omics data from blood biospecimens; however, less invasive methods are desired. Here we propose a model to predict gestational age, using urinary metabolite information. In our prospective cohort study, we collected 2741 urine samples from 187 healthy pregnant women, 23 patients with hypertensive disorders of pregnancy, and 14 patients with spontaneous preterm birth. Using gas chromatography-tandem mass spectrometry, we identified 184 urinary metabolites that showed dynamic systematic changes in healthy pregnant women according to gestational age. A model to predict gestational age during normal pregnancy progression was constructed; the correlation coefficient between actual and predicted weeks of gestation was 0.86. The predicted gestational ages of cases with hypertensive disorders of pregnancy exhibited significant progression, compared with actual gestational ages. This is the first study to predict gestational age in normal and complicated pregnancies by using urinary metabolite information. Minimally invasive urinary metabolomics might facilitate changes in the prediction of gestational age in various clinical settings.Takafumi YamauchiDaisuke OchiNaomi MatsukawaDaisuke SaigusaMami IshikuroTaku ObaraYoshiki TsunemotoSatsuki KumataniRiu YamashitaOsamu TanabeNaoko MinegishiSeizo KoshibaHirohito MetokiShinichi KuriyamaNobuo YaegashiMasayuki YamamotoMasao NagasakiSatoshi HiyamaJunichi SugawaraNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Takafumi Yamauchi
Daisuke Ochi
Naomi Matsukawa
Daisuke Saigusa
Mami Ishikuro
Taku Obara
Yoshiki Tsunemoto
Satsuki Kumatani
Riu Yamashita
Osamu Tanabe
Naoko Minegishi
Seizo Koshiba
Hirohito Metoki
Shinichi Kuriyama
Nobuo Yaegashi
Masayuki Yamamoto
Masao Nagasaki
Satoshi Hiyama
Junichi Sugawara
Machine learning approaches to predict gestational age in normal and complicated pregnancies via urinary metabolomics analysis
description Abstract The elucidation of dynamic metabolomic changes during gestation is particularly important for the development of methods to evaluate pregnancy status or achieve earlier detection of pregnancy-related complications. Some studies have constructed models to evaluate pregnancy status and predict gestational age using omics data from blood biospecimens; however, less invasive methods are desired. Here we propose a model to predict gestational age, using urinary metabolite information. In our prospective cohort study, we collected 2741 urine samples from 187 healthy pregnant women, 23 patients with hypertensive disorders of pregnancy, and 14 patients with spontaneous preterm birth. Using gas chromatography-tandem mass spectrometry, we identified 184 urinary metabolites that showed dynamic systematic changes in healthy pregnant women according to gestational age. A model to predict gestational age during normal pregnancy progression was constructed; the correlation coefficient between actual and predicted weeks of gestation was 0.86. The predicted gestational ages of cases with hypertensive disorders of pregnancy exhibited significant progression, compared with actual gestational ages. This is the first study to predict gestational age in normal and complicated pregnancies by using urinary metabolite information. Minimally invasive urinary metabolomics might facilitate changes in the prediction of gestational age in various clinical settings.
format article
author Takafumi Yamauchi
Daisuke Ochi
Naomi Matsukawa
Daisuke Saigusa
Mami Ishikuro
Taku Obara
Yoshiki Tsunemoto
Satsuki Kumatani
Riu Yamashita
Osamu Tanabe
Naoko Minegishi
Seizo Koshiba
Hirohito Metoki
Shinichi Kuriyama
Nobuo Yaegashi
Masayuki Yamamoto
Masao Nagasaki
Satoshi Hiyama
Junichi Sugawara
author_facet Takafumi Yamauchi
Daisuke Ochi
Naomi Matsukawa
Daisuke Saigusa
Mami Ishikuro
Taku Obara
Yoshiki Tsunemoto
Satsuki Kumatani
Riu Yamashita
Osamu Tanabe
Naoko Minegishi
Seizo Koshiba
Hirohito Metoki
Shinichi Kuriyama
Nobuo Yaegashi
Masayuki Yamamoto
Masao Nagasaki
Satoshi Hiyama
Junichi Sugawara
author_sort Takafumi Yamauchi
title Machine learning approaches to predict gestational age in normal and complicated pregnancies via urinary metabolomics analysis
title_short Machine learning approaches to predict gestational age in normal and complicated pregnancies via urinary metabolomics analysis
title_full Machine learning approaches to predict gestational age in normal and complicated pregnancies via urinary metabolomics analysis
title_fullStr Machine learning approaches to predict gestational age in normal and complicated pregnancies via urinary metabolomics analysis
title_full_unstemmed Machine learning approaches to predict gestational age in normal and complicated pregnancies via urinary metabolomics analysis
title_sort machine learning approaches to predict gestational age in normal and complicated pregnancies via urinary metabolomics analysis
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/29fb6bbfa97f4ccc98f20c973417a67f
work_keys_str_mv AT takafumiyamauchi machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT daisukeochi machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT naomimatsukawa machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT daisukesaigusa machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT mamiishikuro machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT takuobara machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT yoshikitsunemoto machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT satsukikumatani machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT riuyamashita machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT osamutanabe machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT naokominegishi machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT seizokoshiba machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT hirohitometoki machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT shinichikuriyama machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT nobuoyaegashi machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT masayukiyamamoto machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT masaonagasaki machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT satoshihiyama machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
AT junichisugawara machinelearningapproachestopredictgestationalageinnormalandcomplicatedpregnanciesviaurinarymetabolomicsanalysis
_version_ 1718379695341305856