Machine learning approaches to predict gestational age in normal and complicated pregnancies via urinary metabolomics analysis

Abstract The elucidation of dynamic metabolomic changes during gestation is particularly important for the development of methods to evaluate pregnancy status or achieve earlier detection of pregnancy-related complications. Some studies have constructed models to evaluate pregnancy status and predic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Takafumi Yamauchi, Daisuke Ochi, Naomi Matsukawa, Daisuke Saigusa, Mami Ishikuro, Taku Obara, Yoshiki Tsunemoto, Satsuki Kumatani, Riu Yamashita, Osamu Tanabe, Naoko Minegishi, Seizo Koshiba, Hirohito Metoki, Shinichi Kuriyama, Nobuo Yaegashi, Masayuki Yamamoto, Masao Nagasaki, Satoshi Hiyama, Junichi Sugawara
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/29fb6bbfa97f4ccc98f20c973417a67f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares