Machine learning approaches to predict gestational age in normal and complicated pregnancies via urinary metabolomics analysis
Abstract The elucidation of dynamic metabolomic changes during gestation is particularly important for the development of methods to evaluate pregnancy status or achieve earlier detection of pregnancy-related complications. Some studies have constructed models to evaluate pregnancy status and predic...
Enregistré dans:
Auteurs principaux: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/29fb6bbfa97f4ccc98f20c973417a67f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|