Topological measures for identifying and predicting the spread of complex contagions
Understanding of complex contagions is crucial for explaining diffusion processes in networks. Guilbeault and Centola introduce topological mechanisms and measures to elucidate spreading dynamics and identify the most influential nodes in social, epidemic and economic networks.
Guardado en:
Autores principales: | Douglas Guilbeault, Damon Centola |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2a061562ad2841ecb6159cff96230ecd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Experimental evidence for scale-induced category convergence across populations
por: Douglas Guilbeault, et al.
Publicado: (2021) -
The reduction of race and gender bias in clinical treatment recommendations using clinician peer networks in an experimental setting
por: Damon Centola, et al.
Publicado: (2021) -
A simple contagion process describes spreading of traffic jams in urban networks
por: Meead Saberi, et al.
Publicado: (2020) -
Deep learning of contagion dynamics on complex networks
por: Charles Murphy, et al.
Publicado: (2021) -
Spreading predictability in complex networks
por: Na Zhao, et al.
Publicado: (2021)