UAVs in rail damage image diagnostics supported by deep-learning networks
The article uses images from Unmanned Aerial Vehicles (UAVs) for rail diagnostics. The main advantage of such a solution compared to traditional surveys performed with measuring vehicles is the elimination of decreased train traffic. The authors, in the study, limited themselves to the diagnosis of...
Guardado en:
Autores principales: | Bojarczak Piotr, Lesiak Piotr |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2a33549a014840ab92eb6c05f2fd0437 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Generalized Net Model of Forest Zone Monitoring by UAVs
por: Krassimir T. Atanassov, et al.
Publicado: (2021) -
Improvement of the model of object recognition in aero photographs using deep convolutional neural networks
por: Vadym Slyusar, et al.
Publicado: (2021) -
Passive Beamforming and Trajectory Optimization for Reconfigurable Intelligent Surface-Assisted UAV Secure Communication
por: Dawei Wang, et al.
Publicado: (2021) -
Quadrotor Autonomous Navigation in Semi-Known Environments Based on Deep Reinforcement Learning
por: Jiajun Ou, et al.
Publicado: (2021) -
Hierarchical Active Tracking Control for UAVs via Deep Reinforcement Learning
por: Wenlong Zhao, et al.
Publicado: (2021)