Oxygen-Deficient WO<sub>3</sub>/TiO<sub>2</sub>/CC Nanorod Arrays for Visible-Light Photocatalytic Degradation of Methylene Blue
At present, TiO<sub>2</sub> is one of the most widely used photocatalytic materials. However, the narrow response range to light limits the photocatalytic performance. Herein, we reported a successful construction of self-doped R-WO<sub>3</sub>/R-TiO<sub>2</sub>/C...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2a4093700e8646f4ae85bc65b3088960 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | At present, TiO<sub>2</sub> is one of the most widely used photocatalytic materials. However, the narrow response range to light limits the photocatalytic performance. Herein, we reported a successful construction of self-doped R-WO<sub>3</sub>/R-TiO<sub>2</sub>/CC nanocomposites on flexible carbon cloth (CC) via electrochemical reduction to increase the oxygen vacancies (O<sub>vs</sub>), resulting in an enhanced separation efficiency of photo-induced charge carriers. The photocurrent of R-WO<sub>3</sub>/R-TiO<sub>2</sub>/CC at −1.6 V (vs. SCE) was 2.6 times higher than that of WO<sub>3</sub>/TiO<sub>2</sub>/CC, which suggested that O<sub>vs</sub> could improve the response to sunlight. Moreover, the photocatalytic activity of R-WO<sub>3</sub>/TiO<sub>2</sub>/CC was explored using methylene blue (MB). The degradation rate of MB could reach 68%, which was 1.3 times and 3.8 times higher than that of WO<sub>3</sub>/TiO<sub>2</sub>/CC and TiO<sub>2</sub>/CC, respectively. Furthermore, the solution resistance and charge transfer resistance of R-WO<sub>3</sub>/R-TiO<sub>2</sub>/CC were obviously decreased. Therefore, the electrochemical reduction of nanomaterials enabled a promoted separation of photogenerated electron–hole pairs, leading to high photocatalytic activity. |
---|