A Compound fault diagnosis for rolling bearings method based on blind source separation and ensemble empirical mode decomposition.
A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In o...
Guardado en:
Autores principales: | Huaqing Wang, Ruitong Li, Gang Tang, Hongfang Yuan, Qingliang Zhao, Xi Cao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2a547c267fa24519856fd8ca78faa2a8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application of multi-layer denoising based on ensemble empirical mode decomposition in extraction of fault feature of rotating machinery.
por: Kangping Gao, et al.
Publicado: (2021) -
Compound Fault Diagnosis of Rolling Bearing Based on ALIF-KELM
por: Jie Ma, et al.
Publicado: (2021) -
A study on the extraction of characteristics of compound faults of rolling bearings based on ITD-AF-CAF
por: Xiangdong Ge, et al.
Publicado: (2021) -
A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction.
por: Katerina Barnova, et al.
Publicado: (2021) -
Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
por: Ravichandra Madanu, et al.
Publicado: (2021)