Accelerating Causal Inference and Feature Selection Methods through G-Test Computation Reuse
This article presents a novel and remarkably efficient method of computing the statistical G-test made possible by exploiting a connection with the fundamental elements of information theory: by writing the <i>G</i> statistic as a sum of joint entropy terms, its computation is decomposed...
Guardado en:
Autores principales: | Camil Băncioiu, Remus Brad |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2a57924c93f741e0b2061a803f960863 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Coherently amplifying photon production from vacuum with a dense cloud of accelerating photodetectors
por: Hui Wang, et al.
Publicado: (2021) -
Monitoring the size of low-intensity beams at plasma-wakefield accelerators using high-resolution interferometry
por: Ji-Gwang Hwang, et al.
Publicado: (2021) -
Relaxation of Some Confusions about Confounders
por: Ádám Zlatniczki, et al.
Publicado: (2021) -
Sampling the Variational Posterior with Local Refinement
por: Marton Havasi, et al.
Publicado: (2021) -
Accessing Active Inference Theory through Its Implicit and Deliberative Practice in Human Organizations
por: Stephen Fox
Publicado: (2021)