Effect of cryogenic treatment on microstructure evolution and mechanical properties of high nitrogen plastic die steel
In this study, the effect of cryogenic treatment on the microstructure, especially the retained austenite (RA) evolution behavior, and mechanical properties of 55Cr17Mo1VN plastic die steel was investigated. The quenching microstructure consisted of martensite, RA, and undissolved carbides. After th...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2a610702325940a68f9a4f15caf56d11 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2a610702325940a68f9a4f15caf56d11 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2a610702325940a68f9a4f15caf56d112021-11-12T04:35:55ZEffect of cryogenic treatment on microstructure evolution and mechanical properties of high nitrogen plastic die steel2238-785410.1016/j.jmrt.2021.10.124https://doaj.org/article/2a610702325940a68f9a4f15caf56d112021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2238785421012606https://doaj.org/toc/2238-7854In this study, the effect of cryogenic treatment on the microstructure, especially the retained austenite (RA) evolution behavior, and mechanical properties of 55Cr17Mo1VN plastic die steel was investigated. The quenching microstructure consisted of martensite, RA, and undissolved carbides. After the cryogenic treatment, the RA volume fraction decreased from 44.7 to 35.4%, while the hardness increased from 39.0 to 54.6 HRC because of the increase in the dislocation density. Besides, the “new martensite” phase broke the blocky RA phase during the cryogenic treatment, and the two phases keep a strict K–S or N–W orientation relationship, which improved the stability of the steel. Interestingly, in the cryogenically treated sample, the RA decomposed completely. On the other hand, the untreated sample retained 20.7% of its RA phase after the tempering process. The cryogenic treatment decreased the thermal stability of the RA phase during the tempering process, which can be attributed to the release of the hydrostatic pressure and the generation of a large number of precipitates from the RA phase. As a result of precipitation strengthening, fine grain strengthening, and dislocation strengthening, the cryogenically treated sample showed excellent tensile strength (∼2241 MPa) and high hardness (∼56.2 HRC).Congpeng KangFubin LiuZhouhua JiangHaoyang SuoXinhao YuHaibao ZhangShineng DingElsevierarticleCryogenic treatmentRetained austeniteMartensiteMechanical propertiesPrecipitatesMining engineering. MetallurgyTN1-997ENJournal of Materials Research and Technology, Vol 15, Iss , Pp 5128-5140 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Cryogenic treatment Retained austenite Martensite Mechanical properties Precipitates Mining engineering. Metallurgy TN1-997 |
spellingShingle |
Cryogenic treatment Retained austenite Martensite Mechanical properties Precipitates Mining engineering. Metallurgy TN1-997 Congpeng Kang Fubin Liu Zhouhua Jiang Haoyang Suo Xinhao Yu Haibao Zhang Shineng Ding Effect of cryogenic treatment on microstructure evolution and mechanical properties of high nitrogen plastic die steel |
description |
In this study, the effect of cryogenic treatment on the microstructure, especially the retained austenite (RA) evolution behavior, and mechanical properties of 55Cr17Mo1VN plastic die steel was investigated. The quenching microstructure consisted of martensite, RA, and undissolved carbides. After the cryogenic treatment, the RA volume fraction decreased from 44.7 to 35.4%, while the hardness increased from 39.0 to 54.6 HRC because of the increase in the dislocation density. Besides, the “new martensite” phase broke the blocky RA phase during the cryogenic treatment, and the two phases keep a strict K–S or N–W orientation relationship, which improved the stability of the steel. Interestingly, in the cryogenically treated sample, the RA decomposed completely. On the other hand, the untreated sample retained 20.7% of its RA phase after the tempering process. The cryogenic treatment decreased the thermal stability of the RA phase during the tempering process, which can be attributed to the release of the hydrostatic pressure and the generation of a large number of precipitates from the RA phase. As a result of precipitation strengthening, fine grain strengthening, and dislocation strengthening, the cryogenically treated sample showed excellent tensile strength (∼2241 MPa) and high hardness (∼56.2 HRC). |
format |
article |
author |
Congpeng Kang Fubin Liu Zhouhua Jiang Haoyang Suo Xinhao Yu Haibao Zhang Shineng Ding |
author_facet |
Congpeng Kang Fubin Liu Zhouhua Jiang Haoyang Suo Xinhao Yu Haibao Zhang Shineng Ding |
author_sort |
Congpeng Kang |
title |
Effect of cryogenic treatment on microstructure evolution and mechanical properties of high nitrogen plastic die steel |
title_short |
Effect of cryogenic treatment on microstructure evolution and mechanical properties of high nitrogen plastic die steel |
title_full |
Effect of cryogenic treatment on microstructure evolution and mechanical properties of high nitrogen plastic die steel |
title_fullStr |
Effect of cryogenic treatment on microstructure evolution and mechanical properties of high nitrogen plastic die steel |
title_full_unstemmed |
Effect of cryogenic treatment on microstructure evolution and mechanical properties of high nitrogen plastic die steel |
title_sort |
effect of cryogenic treatment on microstructure evolution and mechanical properties of high nitrogen plastic die steel |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/2a610702325940a68f9a4f15caf56d11 |
work_keys_str_mv |
AT congpengkang effectofcryogenictreatmentonmicrostructureevolutionandmechanicalpropertiesofhighnitrogenplasticdiesteel AT fubinliu effectofcryogenictreatmentonmicrostructureevolutionandmechanicalpropertiesofhighnitrogenplasticdiesteel AT zhouhuajiang effectofcryogenictreatmentonmicrostructureevolutionandmechanicalpropertiesofhighnitrogenplasticdiesteel AT haoyangsuo effectofcryogenictreatmentonmicrostructureevolutionandmechanicalpropertiesofhighnitrogenplasticdiesteel AT xinhaoyu effectofcryogenictreatmentonmicrostructureevolutionandmechanicalpropertiesofhighnitrogenplasticdiesteel AT haibaozhang effectofcryogenictreatmentonmicrostructureevolutionandmechanicalpropertiesofhighnitrogenplasticdiesteel AT shinengding effectofcryogenictreatmentonmicrostructureevolutionandmechanicalpropertiesofhighnitrogenplasticdiesteel |
_version_ |
1718431221157986304 |