Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data
DNA modification generates unique electric signals in Oxford Nanopore sequencing data but the signals can be complicated to decipher. Here, the authors develop a deep learning framework, DeepMod, to detect DNA base modifications including 5mC and 6mA using Nanopore sequencing data
Guardado en:
Autores principales: | Qian Liu, Li Fang, Guoliang Yu, Depeng Wang, Chuan-Le Xiao, Kai Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2a64c8015b9e434c94ff1733e2720d34 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Optimizing experimental design for genome sequencing and assembly with Oxford Nanopore Technologies
por: John M. Sutton, et al.
Publicado: (2021) -
Sequencing DNA with nanopores: Troubles and biases.
por: Clara Delahaye, et al.
Publicado: (2021) -
Oxford Nanopore MinION Direct RNA-Seq for Systems Biology
por: Mikhail A. Pyatnitskiy, et al.
Publicado: (2021) -
Towards Real-Time and Affordable Strain-Level Metagenomics-Based Foodborne Outbreak Investigations Using Oxford Nanopore Sequencing Technologies
por: Florence E. Buytaers, et al.
Publicado: (2021) -
Comprehensive Wet-Bench and Bioinformatics Workflow for Complex Microbiota Using Oxford Nanopore Technologies
por: Christoph Ammer-Herrmenau, et al.
Publicado: (2021)