Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data
DNA modification generates unique electric signals in Oxford Nanopore sequencing data but the signals can be complicated to decipher. Here, the authors develop a deep learning framework, DeepMod, to detect DNA base modifications including 5mC and 6mA using Nanopore sequencing data
Enregistré dans:
Auteurs principaux: | Qian Liu, Li Fang, Guoliang Yu, Depeng Wang, Chuan-Le Xiao, Kai Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/2a64c8015b9e434c94ff1733e2720d34 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Optimizing experimental design for genome sequencing and assembly with Oxford Nanopore Technologies
par: John M. Sutton, et autres
Publié: (2021) -
Sequencing DNA with nanopores: Troubles and biases.
par: Clara Delahaye, et autres
Publié: (2021) -
Oxford Nanopore MinION Direct RNA-Seq for Systems Biology
par: Mikhail A. Pyatnitskiy, et autres
Publié: (2021) -
Towards Real-Time and Affordable Strain-Level Metagenomics-Based Foodborne Outbreak Investigations Using Oxford Nanopore Sequencing Technologies
par: Florence E. Buytaers, et autres
Publié: (2021) -
Comprehensive Wet-Bench and Bioinformatics Workflow for Complex Microbiota Using Oxford Nanopore Technologies
par: Christoph Ammer-Herrmenau, et autres
Publié: (2021)