Three-Dimensional Cephalometric Landmarking and Frankfort Horizontal Plane Construction: Reproducibility of Conventional and Novel Landmarks

In some dentofacial deformity patients, especially patients undergoing surgical orthodontic treatments, Computed Tomography (CT) scans are useful to assess complex asymmetry or to plan orthognathic surgery. This assessment would be made easier for orthodontists and surgeons with a three-dimensional...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gauthier Dot, Frédéric Rafflenbeul, Adeline Kerbrat, Philippe Rouch, Laurent Gajny, Thomas Schouman
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
R
Acceso en línea:https://doaj.org/article/2a6cde49c5c14dfd9833540ccc881171
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2a6cde49c5c14dfd9833540ccc881171
record_format dspace
spelling oai:doaj.org-article:2a6cde49c5c14dfd9833540ccc8811712021-11-25T18:01:33ZThree-Dimensional Cephalometric Landmarking and Frankfort Horizontal Plane Construction: Reproducibility of Conventional and Novel Landmarks10.3390/jcm102253032077-0383https://doaj.org/article/2a6cde49c5c14dfd9833540ccc8811712021-11-01T00:00:00Zhttps://www.mdpi.com/2077-0383/10/22/5303https://doaj.org/toc/2077-0383In some dentofacial deformity patients, especially patients undergoing surgical orthodontic treatments, Computed Tomography (CT) scans are useful to assess complex asymmetry or to plan orthognathic surgery. This assessment would be made easier for orthodontists and surgeons with a three-dimensional (3D) cephalometric analysis, which would require the localization of landmarks and the construction of reference planes. The objectives of this study were to assess manual landmarking repeatability and reproducibility (R&R) of a set of 3D landmarks and to evaluate R&R of vertical cephalometric measurements using two Frankfort Horizontal (FH) planes as references for horizontal 3D imaging reorientation. Thirty-three landmarks, divided into “conventional”, “foraminal” and “dental”, were manually located twice by three experienced operators on 20 randomly-selected CT scans of orthognathic surgery patients. R&R confidence intervals (CI) of each landmark in the -x, -y and -z directions were computed according to the ISO 5725 standard. These landmarks were then used to construct 2 FH planes: a conventional FH plane (orbitale left, porion right and left) and a newly proposed FH plane (midinternal acoustic foramen, orbitale right and left). R&R of vertical cephalometric measurements were computed using these 2 FH planes as horizontal references for CT reorientation. Landmarks showing a 95% CI of repeatability and/or reproducibility > 2 mm were found exclusively in the “conventional” landmarks group. Vertical measurements showed excellent R&R (95% CI < 1 mm) with either FH plane as horizontal reference. However, the 2 FH planes were not found to be parallel (absolute angular difference of 2.41°, SD 1.27°). Overall, “dental” and “foraminal” landmarks were more reliable than the “conventional” landmarks. Despite the poor reliability of the landmarks orbitale and porion, the construction of the conventional FH plane provided a reliable horizontal reference for 3D craniofacial CT scan reorientation.Gauthier DotFrédéric RafflenbeulAdeline KerbratPhilippe RouchLaurent GajnyThomas SchoumanMDPI AGarticletomographyX-ray computedanatomic landmarksreproducibility of resultsorthodonticsorthognathic surgeryMedicineRENJournal of Clinical Medicine, Vol 10, Iss 5303, p 5303 (2021)
institution DOAJ
collection DOAJ
language EN
topic tomography
X-ray computed
anatomic landmarks
reproducibility of results
orthodontics
orthognathic surgery
Medicine
R
spellingShingle tomography
X-ray computed
anatomic landmarks
reproducibility of results
orthodontics
orthognathic surgery
Medicine
R
Gauthier Dot
Frédéric Rafflenbeul
Adeline Kerbrat
Philippe Rouch
Laurent Gajny
Thomas Schouman
Three-Dimensional Cephalometric Landmarking and Frankfort Horizontal Plane Construction: Reproducibility of Conventional and Novel Landmarks
description In some dentofacial deformity patients, especially patients undergoing surgical orthodontic treatments, Computed Tomography (CT) scans are useful to assess complex asymmetry or to plan orthognathic surgery. This assessment would be made easier for orthodontists and surgeons with a three-dimensional (3D) cephalometric analysis, which would require the localization of landmarks and the construction of reference planes. The objectives of this study were to assess manual landmarking repeatability and reproducibility (R&R) of a set of 3D landmarks and to evaluate R&R of vertical cephalometric measurements using two Frankfort Horizontal (FH) planes as references for horizontal 3D imaging reorientation. Thirty-three landmarks, divided into “conventional”, “foraminal” and “dental”, were manually located twice by three experienced operators on 20 randomly-selected CT scans of orthognathic surgery patients. R&R confidence intervals (CI) of each landmark in the -x, -y and -z directions were computed according to the ISO 5725 standard. These landmarks were then used to construct 2 FH planes: a conventional FH plane (orbitale left, porion right and left) and a newly proposed FH plane (midinternal acoustic foramen, orbitale right and left). R&R of vertical cephalometric measurements were computed using these 2 FH planes as horizontal references for CT reorientation. Landmarks showing a 95% CI of repeatability and/or reproducibility > 2 mm were found exclusively in the “conventional” landmarks group. Vertical measurements showed excellent R&R (95% CI < 1 mm) with either FH plane as horizontal reference. However, the 2 FH planes were not found to be parallel (absolute angular difference of 2.41°, SD 1.27°). Overall, “dental” and “foraminal” landmarks were more reliable than the “conventional” landmarks. Despite the poor reliability of the landmarks orbitale and porion, the construction of the conventional FH plane provided a reliable horizontal reference for 3D craniofacial CT scan reorientation.
format article
author Gauthier Dot
Frédéric Rafflenbeul
Adeline Kerbrat
Philippe Rouch
Laurent Gajny
Thomas Schouman
author_facet Gauthier Dot
Frédéric Rafflenbeul
Adeline Kerbrat
Philippe Rouch
Laurent Gajny
Thomas Schouman
author_sort Gauthier Dot
title Three-Dimensional Cephalometric Landmarking and Frankfort Horizontal Plane Construction: Reproducibility of Conventional and Novel Landmarks
title_short Three-Dimensional Cephalometric Landmarking and Frankfort Horizontal Plane Construction: Reproducibility of Conventional and Novel Landmarks
title_full Three-Dimensional Cephalometric Landmarking and Frankfort Horizontal Plane Construction: Reproducibility of Conventional and Novel Landmarks
title_fullStr Three-Dimensional Cephalometric Landmarking and Frankfort Horizontal Plane Construction: Reproducibility of Conventional and Novel Landmarks
title_full_unstemmed Three-Dimensional Cephalometric Landmarking and Frankfort Horizontal Plane Construction: Reproducibility of Conventional and Novel Landmarks
title_sort three-dimensional cephalometric landmarking and frankfort horizontal plane construction: reproducibility of conventional and novel landmarks
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/2a6cde49c5c14dfd9833540ccc881171
work_keys_str_mv AT gauthierdot threedimensionalcephalometriclandmarkingandfrankforthorizontalplaneconstructionreproducibilityofconventionalandnovellandmarks
AT fredericrafflenbeul threedimensionalcephalometriclandmarkingandfrankforthorizontalplaneconstructionreproducibilityofconventionalandnovellandmarks
AT adelinekerbrat threedimensionalcephalometriclandmarkingandfrankforthorizontalplaneconstructionreproducibilityofconventionalandnovellandmarks
AT philipperouch threedimensionalcephalometriclandmarkingandfrankforthorizontalplaneconstructionreproducibilityofconventionalandnovellandmarks
AT laurentgajny threedimensionalcephalometriclandmarkingandfrankforthorizontalplaneconstructionreproducibilityofconventionalandnovellandmarks
AT thomasschouman threedimensionalcephalometriclandmarkingandfrankforthorizontalplaneconstructionreproducibilityofconventionalandnovellandmarks
_version_ 1718411731752976384