Antioxidant system response, mineral element uptake and safe utilization of Polygonatum sibiricum in cadmium-contaminated soil

Abstract Chinese herbal medicine is widely cultivated in Southwest China, where the soil cadmium (Cd) contamination of farmland is more serious than that in China as a whole. In this study, Polygonatum sibiricum was exposed to Cd at concentrations of e−1, e0, e2, and e4 mg/kg for 30, 60, and 90 days...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yuchen Kang, Li Yang, Haibo Dai, Mengdi Xie, Yuhao Wang, Jie Peng, Hui Sun, Tianqi Ao, Wenqing Chen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2a7bd6d4dc43489bb474944c2eab6a5b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Chinese herbal medicine is widely cultivated in Southwest China, where the soil cadmium (Cd) contamination of farmland is more serious than that in China as a whole. In this study, Polygonatum sibiricum was exposed to Cd at concentrations of e−1, e0, e2, and e4 mg/kg for 30, 60, and 90 days, and the physiological stress responses, Cd and mineral element uptake, antioxidant enzyme activities, and content changes of pharmaceutical ingredients (polysaccharides) were analyzed to decipher the feasibility of safe utilization in Cd-contaminated soil. The results show that the activity of antioxidant enzymes (SOD and CAT) in the aboveground part was always higher than that in the underground part. The underground part of Polygonatum sibiricum mobilizes nonenzymatic systems to facilitate the synthesis of polysaccharides (PCP1, PCP2) with antioxidant properties to cope with Cd stress. Mineral elements (P, K, Ca, Mg, Fe, Cu, and Zn) significantly (p < 0.05) changed after 90 d of cultivation. In particular, the changes in the iron and zinc content were significantly correlated (p < 0.05) with the activities of SOD and POD. Soil Cd at e0 mg/kg can guarantee the safe production and utilization of Polygonatum sibiricum, and the stimulation of Cd promotes polysaccharide synthesis and biomass growth.