Novel Solutions to the Three-Anchor ToA-Based Three-Dimensional Positioning Problem
At least four non-coplanar anchor nodes (ANs) are required for the time-of-arrival (ToA)-based three-dimensional (3D) positioning to enable unique position estimation. Direct method (DM) and particle filter (PF) algorithms were developed to address the three-anchor ToA-based 3D positioning problem....
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2a7f3ad1ae87420499ce7be261d3da94 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2a7f3ad1ae87420499ce7be261d3da94 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2a7f3ad1ae87420499ce7be261d3da942021-11-11T19:16:14ZNovel Solutions to the Three-Anchor ToA-Based Three-Dimensional Positioning Problem10.3390/s212173251424-8220https://doaj.org/article/2a7f3ad1ae87420499ce7be261d3da942021-11-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/21/7325https://doaj.org/toc/1424-8220At least four non-coplanar anchor nodes (ANs) are required for the time-of-arrival (ToA)-based three-dimensional (3D) positioning to enable unique position estimation. Direct method (DM) and particle filter (PF) algorithms were developed to address the three-anchor ToA-based 3D positioning problem. The proposed DM reduces this problem to the solution of a quadratic equation, exploiting the knowledge about the workspace, to first estimate the <i>x</i>- or <i>z</i>-coordinate, and then the remaining two coordinates. The implemented PF uses 1000 particles to represent the posterior probability density function (PDF) of the AN’s 3D position. The prediction step generates new particles by a resampling procedure. The ToA measurements determine the importance of these particles to enable updating the posterior PDF and estimating the 3D position of the AN. Simulation results corroborate the viability of the developed DM and PF algorithms, in terms of accuracy and computational cost, in the pursuit and circumnavigation scenarios, and even with a horizontally coplanar arrangement of the three ANs. Therefore, it is possible to enable applications requiring real-time positioning, such as unmanned aerial vehicle (UAV) autonomous docking and circling a stationary (or moving) position, without the need for an excessive number of ANs.Mohamed Khalaf-AllahMDPI AGarticletime of arrival (ToA)three-dimensional (3D) positioningdirect method (DM)particle filter (PF)unmanned aerial vehicle (UAV)Chemical technologyTP1-1185ENSensors, Vol 21, Iss 7325, p 7325 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
time of arrival (ToA) three-dimensional (3D) positioning direct method (DM) particle filter (PF) unmanned aerial vehicle (UAV) Chemical technology TP1-1185 |
spellingShingle |
time of arrival (ToA) three-dimensional (3D) positioning direct method (DM) particle filter (PF) unmanned aerial vehicle (UAV) Chemical technology TP1-1185 Mohamed Khalaf-Allah Novel Solutions to the Three-Anchor ToA-Based Three-Dimensional Positioning Problem |
description |
At least four non-coplanar anchor nodes (ANs) are required for the time-of-arrival (ToA)-based three-dimensional (3D) positioning to enable unique position estimation. Direct method (DM) and particle filter (PF) algorithms were developed to address the three-anchor ToA-based 3D positioning problem. The proposed DM reduces this problem to the solution of a quadratic equation, exploiting the knowledge about the workspace, to first estimate the <i>x</i>- or <i>z</i>-coordinate, and then the remaining two coordinates. The implemented PF uses 1000 particles to represent the posterior probability density function (PDF) of the AN’s 3D position. The prediction step generates new particles by a resampling procedure. The ToA measurements determine the importance of these particles to enable updating the posterior PDF and estimating the 3D position of the AN. Simulation results corroborate the viability of the developed DM and PF algorithms, in terms of accuracy and computational cost, in the pursuit and circumnavigation scenarios, and even with a horizontally coplanar arrangement of the three ANs. Therefore, it is possible to enable applications requiring real-time positioning, such as unmanned aerial vehicle (UAV) autonomous docking and circling a stationary (or moving) position, without the need for an excessive number of ANs. |
format |
article |
author |
Mohamed Khalaf-Allah |
author_facet |
Mohamed Khalaf-Allah |
author_sort |
Mohamed Khalaf-Allah |
title |
Novel Solutions to the Three-Anchor ToA-Based Three-Dimensional Positioning Problem |
title_short |
Novel Solutions to the Three-Anchor ToA-Based Three-Dimensional Positioning Problem |
title_full |
Novel Solutions to the Three-Anchor ToA-Based Three-Dimensional Positioning Problem |
title_fullStr |
Novel Solutions to the Three-Anchor ToA-Based Three-Dimensional Positioning Problem |
title_full_unstemmed |
Novel Solutions to the Three-Anchor ToA-Based Three-Dimensional Positioning Problem |
title_sort |
novel solutions to the three-anchor toa-based three-dimensional positioning problem |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/2a7f3ad1ae87420499ce7be261d3da94 |
work_keys_str_mv |
AT mohamedkhalafallah novelsolutionstothethreeanchortoabasedthreedimensionalpositioningproblem |
_version_ |
1718431573900001280 |