An efficient networking solution for extending and controlling wireless sensor networks using low-energy technologies
Wireless sensor networks connect a set of highly flexible wireless devices with small weight and size. They are used to monitor and control the environment by organizing the acquired data at a central device. Constructing fully connected networks using low power consumption sensors, devices, and pro...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2a87930c8db74da2adeb02b35a4bcf27 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Wireless sensor networks connect a set of highly flexible wireless devices with small weight and size. They are used to monitor and control the environment by organizing the acquired data at a central device. Constructing fully connected networks using low power consumption sensors, devices, and protocols is one of the main challenges facing wireless sensor networks, especially in places where it is difficult to establish wireless networks in a normal way, such as military areas, archaeological sites, agricultural districts, construction sites, and so on. This paper proposes an approach for constructing and extending Bi-Directional mesh networks using low power consumption technologies inside various indoors and outdoors architectures called “an adaptable Spider-Mesh topology”. The use of ESP-NOW protocol as a communication technology added an advantage of longer communication distance versus a slight increase of consumed power. It provides 15 times longer distance compared to BLE protocol while consuming only twice as much power. Therefore, according to our theoretical and experimental comparisons, the proposed approach could provide higher network coverage while maintaining an acceptable level of power consumption. |
---|