Conservative Finite-Difference Schemes for Two Nonlinear Schrödinger Equations Describing Frequency Tripling in a Medium with Cubic Nonlinearity: Competition of Invariants
Two 1D nonlinear coupled Schrödinger equations are often used for describing optical frequency conversion possessing a few conservation laws (invariants), for example, the energy’s invariant and the Hamiltonian. Their influence on the properties of the finite-difference schemes (FDSs) may be differe...
Guardado en:
Autores principales: | Vyacheslav Trofimov, Maria Loginova |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2a930017d61443daa7baa0cddcf28190 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Optical wave patterns of nonlinear Schrödinger equation with anti-cubic nonlinearity in optical fiber
por: Fan Sun
Publicado: (2021) -
Instability in nonlinear Schrödinger breathers
por: Muñoz,Claudio
Publicado: (2017) -
Approximate Mei Symmetries and Invariants of the Hamiltonian
por: Umara Kausar, et al.
Publicado: (2021) -
On the optical solutions to nonlinear Schrödinger equation with second-order spatiotemporal dispersion
por: Rezazadeh Hadi, et al.
Publicado: (2021) -
Existence and nonlinear stability of solitary wave solutions for coupled Schrodinger-KdV systems
por: Pengxue Cui, et al.
Publicado: (2021)