Super-resolution microscopy with very large working distance by means of distributed aperture illumination

Abstract The limits of conventional light microscopy (“Abbe-Limit“) depend critically on the numerical aperture (NA) of the objective lens. Imaging at large working distances or a large field-of-view typically requires low NA objectives, thereby reducing the optical resolution to the multi micromete...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Udo Birk, Johann v. Hase, Christoph Cremer
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2a99d9711627477483bb0270072bd9e7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The limits of conventional light microscopy (“Abbe-Limit“) depend critically on the numerical aperture (NA) of the objective lens. Imaging at large working distances or a large field-of-view typically requires low NA objectives, thereby reducing the optical resolution to the multi micrometer range. Based on numerical simulations of the intensity field distribution, we present an illumination concept for a super-resolution microscope which allows a three dimensional (3D) optical resolution around 150 nm for working distances up to the centimeter regime. In principle, the system allows great flexibility, because the illumination concept can be used to approximate the point-spread-function of conventional microscope optics, with the additional benefit of a customizable pupil function. Compared with the Abbe-limit using an objective lens with such a large working distance, a volume resolution enhancement potential in the order of 104 is estimated.