Tracking COVID-19 using online search
Abstract Previous research has demonstrated that various properties of infectious diseases can be inferred from online search behaviour. In this work we use time series of online search query frequencies to gain insights about the prevalence of COVID-19 in multiple countries. We first develop unsupe...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2aa635b5cb99459ca53411cd1aea79db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2aa635b5cb99459ca53411cd1aea79db |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2aa635b5cb99459ca53411cd1aea79db2021-12-02T13:50:57ZTracking COVID-19 using online search10.1038/s41746-021-00384-w2398-6352https://doaj.org/article/2aa635b5cb99459ca53411cd1aea79db2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41746-021-00384-whttps://doaj.org/toc/2398-6352Abstract Previous research has demonstrated that various properties of infectious diseases can be inferred from online search behaviour. In this work we use time series of online search query frequencies to gain insights about the prevalence of COVID-19 in multiple countries. We first develop unsupervised modelling techniques based on associated symptom categories identified by the United Kingdom’s National Health Service and Public Health England. We then attempt to minimise an expected bias in these signals caused by public interest—as opposed to infections—using the proportion of news media coverage devoted to COVID-19 as a proxy indicator. Our analysis indicates that models based on online searches precede the reported confirmed cases and deaths by 16.7 (10.2–23.2) and 22.1 (17.4–26.9) days, respectively. We also investigate transfer learning techniques for mapping supervised models from countries where the spread of the disease has progressed extensively to countries that are in earlier phases of their respective epidemic curves. Furthermore, we compare time series of online search activity against confirmed COVID-19 cases or deaths jointly across multiple countries, uncovering interesting querying patterns, including the finding that rarer symptoms are better predictors than common ones. Finally, we show that web searches improve the short-term forecasting accuracy of autoregressive models for COVID-19 deaths. Our work provides evidence that online search data can be used to develop complementary public health surveillance methods to help inform the COVID-19 response in conjunction with more established approaches.Vasileios LamposMaimuna S. MajumderElad Yom-TovMichael EdelsteinSimon MouraYohhei HamadaMolebogeng X. RangakaRachel A. McKendryIngemar J. CoxNature PortfolioarticleComputer applications to medicine. Medical informaticsR858-859.7ENnpj Digital Medicine, Vol 4, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Computer applications to medicine. Medical informatics R858-859.7 |
spellingShingle |
Computer applications to medicine. Medical informatics R858-859.7 Vasileios Lampos Maimuna S. Majumder Elad Yom-Tov Michael Edelstein Simon Moura Yohhei Hamada Molebogeng X. Rangaka Rachel A. McKendry Ingemar J. Cox Tracking COVID-19 using online search |
description |
Abstract Previous research has demonstrated that various properties of infectious diseases can be inferred from online search behaviour. In this work we use time series of online search query frequencies to gain insights about the prevalence of COVID-19 in multiple countries. We first develop unsupervised modelling techniques based on associated symptom categories identified by the United Kingdom’s National Health Service and Public Health England. We then attempt to minimise an expected bias in these signals caused by public interest—as opposed to infections—using the proportion of news media coverage devoted to COVID-19 as a proxy indicator. Our analysis indicates that models based on online searches precede the reported confirmed cases and deaths by 16.7 (10.2–23.2) and 22.1 (17.4–26.9) days, respectively. We also investigate transfer learning techniques for mapping supervised models from countries where the spread of the disease has progressed extensively to countries that are in earlier phases of their respective epidemic curves. Furthermore, we compare time series of online search activity against confirmed COVID-19 cases or deaths jointly across multiple countries, uncovering interesting querying patterns, including the finding that rarer symptoms are better predictors than common ones. Finally, we show that web searches improve the short-term forecasting accuracy of autoregressive models for COVID-19 deaths. Our work provides evidence that online search data can be used to develop complementary public health surveillance methods to help inform the COVID-19 response in conjunction with more established approaches. |
format |
article |
author |
Vasileios Lampos Maimuna S. Majumder Elad Yom-Tov Michael Edelstein Simon Moura Yohhei Hamada Molebogeng X. Rangaka Rachel A. McKendry Ingemar J. Cox |
author_facet |
Vasileios Lampos Maimuna S. Majumder Elad Yom-Tov Michael Edelstein Simon Moura Yohhei Hamada Molebogeng X. Rangaka Rachel A. McKendry Ingemar J. Cox |
author_sort |
Vasileios Lampos |
title |
Tracking COVID-19 using online search |
title_short |
Tracking COVID-19 using online search |
title_full |
Tracking COVID-19 using online search |
title_fullStr |
Tracking COVID-19 using online search |
title_full_unstemmed |
Tracking COVID-19 using online search |
title_sort |
tracking covid-19 using online search |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/2aa635b5cb99459ca53411cd1aea79db |
work_keys_str_mv |
AT vasileioslampos trackingcovid19usingonlinesearch AT maimunasmajumder trackingcovid19usingonlinesearch AT eladyomtov trackingcovid19usingonlinesearch AT michaeledelstein trackingcovid19usingonlinesearch AT simonmoura trackingcovid19usingonlinesearch AT yohheihamada trackingcovid19usingonlinesearch AT molebogengxrangaka trackingcovid19usingonlinesearch AT rachelamckendry trackingcovid19usingonlinesearch AT ingemarjcox trackingcovid19usingonlinesearch |
_version_ |
1718392428696698880 |