Tracking COVID-19 using online search
Abstract Previous research has demonstrated that various properties of infectious diseases can be inferred from online search behaviour. In this work we use time series of online search query frequencies to gain insights about the prevalence of COVID-19 in multiple countries. We first develop unsupe...
Guardado en:
Autores principales: | Vasileios Lampos, Maimuna S. Majumder, Elad Yom-Tov, Michael Edelstein, Simon Moura, Yohhei Hamada, Molebogeng X. Rangaka, Rachel A. McKendry, Ingemar J. Cox |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2aa635b5cb99459ca53411cd1aea79db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Vaccine advertising: preach to the converted or to the unaware?
por: Masha Krupenkin, et al.
Publicado: (2021) -
Internet search patterns reveal firearm sales, policies, and deaths
por: John S. Brownstein, et al.
Publicado: (2020) -
Internet search and medicaid prescription drug data as predictors of opioid emergency department visits
por: Sean D. Young, et al.
Publicado: (2021) -
Pan-cancer diagnostic consensus through searching archival histopathology images using artificial intelligence
por: Shivam Kalra, et al.
Publicado: (2020) -
COVID-19 information retrieval with deep-learning based semantic search, question answering, and abstractive summarization
por: Andre Esteva, et al.
Publicado: (2021)