Machine learning modelling of blood lipid biomarkers in familial hypercholesterolaemia versus polygenic/environmental dyslipidaemia
Abstract Familial hypercholesterolaemia increases circulating LDL-C levels and leads to premature cardiovascular disease when undiagnosed or untreated. Current guidelines support genetic testing in patients complying with clinical diagnostic criteria and cascade screening of their family members. Ho...
Guardado en:
Autores principales: | Marta Correia, Eva Kagenaar, Daniël Bernardus van Schalkwijk, Mafalda Bourbon, Margarida Gama-Carvalho |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2ab9736d59e0404a97e8cefb7a0a19cd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Performance and clinical utility of supervised machine-learning approaches in detecting familial hypercholesterolaemia in primary care
por: Ralph K. Akyea, et al.
Publicado: (2020) -
Comparing the performance of the novel FAMCAT algorithms and established case-finding criteria for familial hypercholesterolaemia in primary care
por: Joe Kai, et al.
Publicado: (2021) -
Statin treatment and LDL-cholesterol treatment goal attainment among individuals with familial hypercholesterolaemia in primary care
por: Joe Kai, et al.
Publicado: (2021) -
Emerging Strategies for the Management of Atherogenic Dyslipidaemia
por: Anandita Agarwala, et al.
Publicado: (2020) -
Anthocyanin on platelet function in people with dyslipidaemia
por: Ayodele A. Ogunleye
Publicado: (2021)