Finding influential nodes for integration in brain networks using optimal percolation theory

Complex networks can be used to model brain networks. Here the authors identify the essential nodes in a model of a brain network and then validate these predictions by means of in vivo pharmacogenetic interventions. They find that the nucleus accumbens is a central region for brain integration.

Guardado en:
Detalles Bibliográficos
Autores principales: Gino Del Ferraro, Andrea Moreno, Byungjoon Min, Flaviano Morone, Úrsula Pérez-Ramírez, Laura Pérez-Cervera, Lucas C. Parra, Andrei Holodny, Santiago Canals, Hernán A. Makse
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/2aba73d66c5a4dc486c162f42c3f7d99
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2aba73d66c5a4dc486c162f42c3f7d99
record_format dspace
spelling oai:doaj.org-article:2aba73d66c5a4dc486c162f42c3f7d992021-12-02T16:49:22ZFinding influential nodes for integration in brain networks using optimal percolation theory10.1038/s41467-018-04718-32041-1723https://doaj.org/article/2aba73d66c5a4dc486c162f42c3f7d992018-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-04718-3https://doaj.org/toc/2041-1723Complex networks can be used to model brain networks. Here the authors identify the essential nodes in a model of a brain network and then validate these predictions by means of in vivo pharmacogenetic interventions. They find that the nucleus accumbens is a central region for brain integration.Gino Del FerraroAndrea MorenoByungjoon MinFlaviano MoroneÚrsula Pérez-RamírezLaura Pérez-CerveraLucas C. ParraAndrei HolodnySantiago CanalsHernán A. MakseNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-12 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Gino Del Ferraro
Andrea Moreno
Byungjoon Min
Flaviano Morone
Úrsula Pérez-Ramírez
Laura Pérez-Cervera
Lucas C. Parra
Andrei Holodny
Santiago Canals
Hernán A. Makse
Finding influential nodes for integration in brain networks using optimal percolation theory
description Complex networks can be used to model brain networks. Here the authors identify the essential nodes in a model of a brain network and then validate these predictions by means of in vivo pharmacogenetic interventions. They find that the nucleus accumbens is a central region for brain integration.
format article
author Gino Del Ferraro
Andrea Moreno
Byungjoon Min
Flaviano Morone
Úrsula Pérez-Ramírez
Laura Pérez-Cervera
Lucas C. Parra
Andrei Holodny
Santiago Canals
Hernán A. Makse
author_facet Gino Del Ferraro
Andrea Moreno
Byungjoon Min
Flaviano Morone
Úrsula Pérez-Ramírez
Laura Pérez-Cervera
Lucas C. Parra
Andrei Holodny
Santiago Canals
Hernán A. Makse
author_sort Gino Del Ferraro
title Finding influential nodes for integration in brain networks using optimal percolation theory
title_short Finding influential nodes for integration in brain networks using optimal percolation theory
title_full Finding influential nodes for integration in brain networks using optimal percolation theory
title_fullStr Finding influential nodes for integration in brain networks using optimal percolation theory
title_full_unstemmed Finding influential nodes for integration in brain networks using optimal percolation theory
title_sort finding influential nodes for integration in brain networks using optimal percolation theory
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/2aba73d66c5a4dc486c162f42c3f7d99
work_keys_str_mv AT ginodelferraro findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT andreamoreno findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT byungjoonmin findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT flavianomorone findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT ursulaperezramirez findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT lauraperezcervera findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT lucascparra findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT andreiholodny findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT santiagocanals findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT hernanamakse findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
_version_ 1718383325047947264