Finding influential nodes for integration in brain networks using optimal percolation theory
Complex networks can be used to model brain networks. Here the authors identify the essential nodes in a model of a brain network and then validate these predictions by means of in vivo pharmacogenetic interventions. They find that the nucleus accumbens is a central region for brain integration.
Guardado en:
Autores principales: | Gino Del Ferraro, Andrea Moreno, Byungjoon Min, Flaviano Morone, Úrsula Pérez-Ramírez, Laura Pérez-Cervera, Lucas C. Parra, Andrei Holodny, Santiago Canals, Hernán A. Makse |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2aba73d66c5a4dc486c162f42c3f7d99 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Publisher Correction: Finding influential nodes for integration in brain networks using optimal percolation theory
por: Gino Del Ferraro, et al.
Publicado: (2018) -
Monolingual and bilingual language networks in healthy subjects using functional MRI and graph theory
por: Qiongge Li, et al.
Publicado: (2021) -
Percolation centrality: quantifying graph-theoretic impact of nodes during percolation in networks.
por: Mahendra Piraveenan, et al.
Publicado: (2013) -
Symmetry group factorization reveals the structure-function relation in the neural connectome of Caenorhabditis elegans
por: Flaviano Morone, et al.
Publicado: (2019) -
A bio-inspired methodology of identifying influential nodes in complex networks.
por: Cai Gao, et al.
Publicado: (2013)