A tidally driven fjord-like strait close to an amphidromic region

<p>The strait studied in this paper, “Sundalagið Norður”, is the northern part of a narrow body of seawater separating the two largest islands in the Faroe Islands (Faroes). It has shallow sills in both ends and considerably deeper waters in between. South of the southern end of the strait the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: S. V. Erenbjerg, J. Albretsen, K. Simonsen, E. L. Olsen, E. Kaas, B. Hansen
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
G
Acceso en línea:https://doaj.org/article/2adce85fe8764593a76000e561b8fad4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2adce85fe8764593a76000e561b8fad4
record_format dspace
spelling oai:doaj.org-article:2adce85fe8764593a76000e561b8fad42021-11-11T14:24:32ZA tidally driven fjord-like strait close to an amphidromic region10.5194/os-17-1639-20211812-07841812-0792https://doaj.org/article/2adce85fe8764593a76000e561b8fad42021-11-01T00:00:00Zhttps://os.copernicus.org/articles/17/1639/2021/os-17-1639-2021.pdfhttps://doaj.org/toc/1812-0784https://doaj.org/toc/1812-0792<p>The strait studied in this paper, “Sundalagið Norður”, is the northern part of a narrow body of seawater separating the two largest islands in the Faroe Islands (Faroes). It has shallow sills in both ends and considerably deeper waters in between. South of the southern end of the strait there is an amphidromic region for the semidiurnal tides so that the tidal range is much lower south of the strait than north of it. The resulting tidal forcing generates periodically varying inflow of seawater across the northern sill, but only a part of that manages to cross the narrow and shallow southern sill. Combined with a large input of freshwater, this gives the strait a fjord-like character. To investigate how this fjord-like character affects the circulation within the strait and its exchanges with outside waters, a pilot project was initiated to simulate the dynamics of the strait with a high-resolution ocean model for a month. The model simulations show clearly the dominance of tidal forcing over freshwater (estuarine) and wind on timescales up to a day. On longer timescales, the simulations indicate systematic variations in the net flows (averaged over a diurnal tidal period) through both the upper and deeper layers. These long-period variations of net flow in the model simulations are forced by sea level differences between both ends of the strait generated by the dominant fortnightly and monthly tidal constituents (Mf, MSf, Mm, MSm). Harmonic analysis of sea level records from two tide gauges located off each end of the strait demonstrates that this behaviour is not a model artefact and it has pronounced effects on the strait. Not only does it induce long-period (mainly fortnightly) variations in the net flow through the strait, but it also generates variations in the estuarine characteristics. According to the model simulations, periods with net southward flow, typically lasting a week, have a strait-like character with net southward flow almost everywhere. Periods with net northward flow, in contrast, have a more fjord-like character with stronger salinity stratification and a southward counter-flow in the deep layer. This also induces a large difference in renewal rate of the deep water between the two periods, which is important to consider for human utilization of the strait, especially the local aquaculture plant. The combination of topographic, freshwater, and tidal characteristics creating these long-period variations is rather unusual, and it is not known whether similar systems exist elsewhere, but the long-period variations tend to be masked by the stronger semidiurnal and diurnal variations and may easily be overlooked.</p>S. V. ErenbjergS. V. ErenbjergJ. AlbretsenK. SimonsenE. L. OlsenE. KaasE. KaasB. HansenCopernicus PublicationsarticleGeography. Anthropology. RecreationGEnvironmental sciencesGE1-350ENOcean Science, Vol 17, Pp 1639-1655 (2021)
institution DOAJ
collection DOAJ
language EN
topic Geography. Anthropology. Recreation
G
Environmental sciences
GE1-350
spellingShingle Geography. Anthropology. Recreation
G
Environmental sciences
GE1-350
S. V. Erenbjerg
S. V. Erenbjerg
J. Albretsen
K. Simonsen
E. L. Olsen
E. Kaas
E. Kaas
B. Hansen
A tidally driven fjord-like strait close to an amphidromic region
description <p>The strait studied in this paper, “Sundalagið Norður”, is the northern part of a narrow body of seawater separating the two largest islands in the Faroe Islands (Faroes). It has shallow sills in both ends and considerably deeper waters in between. South of the southern end of the strait there is an amphidromic region for the semidiurnal tides so that the tidal range is much lower south of the strait than north of it. The resulting tidal forcing generates periodically varying inflow of seawater across the northern sill, but only a part of that manages to cross the narrow and shallow southern sill. Combined with a large input of freshwater, this gives the strait a fjord-like character. To investigate how this fjord-like character affects the circulation within the strait and its exchanges with outside waters, a pilot project was initiated to simulate the dynamics of the strait with a high-resolution ocean model for a month. The model simulations show clearly the dominance of tidal forcing over freshwater (estuarine) and wind on timescales up to a day. On longer timescales, the simulations indicate systematic variations in the net flows (averaged over a diurnal tidal period) through both the upper and deeper layers. These long-period variations of net flow in the model simulations are forced by sea level differences between both ends of the strait generated by the dominant fortnightly and monthly tidal constituents (Mf, MSf, Mm, MSm). Harmonic analysis of sea level records from two tide gauges located off each end of the strait demonstrates that this behaviour is not a model artefact and it has pronounced effects on the strait. Not only does it induce long-period (mainly fortnightly) variations in the net flow through the strait, but it also generates variations in the estuarine characteristics. According to the model simulations, periods with net southward flow, typically lasting a week, have a strait-like character with net southward flow almost everywhere. Periods with net northward flow, in contrast, have a more fjord-like character with stronger salinity stratification and a southward counter-flow in the deep layer. This also induces a large difference in renewal rate of the deep water between the two periods, which is important to consider for human utilization of the strait, especially the local aquaculture plant. The combination of topographic, freshwater, and tidal characteristics creating these long-period variations is rather unusual, and it is not known whether similar systems exist elsewhere, but the long-period variations tend to be masked by the stronger semidiurnal and diurnal variations and may easily be overlooked.</p>
format article
author S. V. Erenbjerg
S. V. Erenbjerg
J. Albretsen
K. Simonsen
E. L. Olsen
E. Kaas
E. Kaas
B. Hansen
author_facet S. V. Erenbjerg
S. V. Erenbjerg
J. Albretsen
K. Simonsen
E. L. Olsen
E. Kaas
E. Kaas
B. Hansen
author_sort S. V. Erenbjerg
title A tidally driven fjord-like strait close to an amphidromic region
title_short A tidally driven fjord-like strait close to an amphidromic region
title_full A tidally driven fjord-like strait close to an amphidromic region
title_fullStr A tidally driven fjord-like strait close to an amphidromic region
title_full_unstemmed A tidally driven fjord-like strait close to an amphidromic region
title_sort tidally driven fjord-like strait close to an amphidromic region
publisher Copernicus Publications
publishDate 2021
url https://doaj.org/article/2adce85fe8764593a76000e561b8fad4
work_keys_str_mv AT sverenbjerg atidallydrivenfjordlikestraitclosetoanamphidromicregion
AT sverenbjerg atidallydrivenfjordlikestraitclosetoanamphidromicregion
AT jalbretsen atidallydrivenfjordlikestraitclosetoanamphidromicregion
AT ksimonsen atidallydrivenfjordlikestraitclosetoanamphidromicregion
AT elolsen atidallydrivenfjordlikestraitclosetoanamphidromicregion
AT ekaas atidallydrivenfjordlikestraitclosetoanamphidromicregion
AT ekaas atidallydrivenfjordlikestraitclosetoanamphidromicregion
AT bhansen atidallydrivenfjordlikestraitclosetoanamphidromicregion
AT sverenbjerg tidallydrivenfjordlikestraitclosetoanamphidromicregion
AT sverenbjerg tidallydrivenfjordlikestraitclosetoanamphidromicregion
AT jalbretsen tidallydrivenfjordlikestraitclosetoanamphidromicregion
AT ksimonsen tidallydrivenfjordlikestraitclosetoanamphidromicregion
AT elolsen tidallydrivenfjordlikestraitclosetoanamphidromicregion
AT ekaas tidallydrivenfjordlikestraitclosetoanamphidromicregion
AT ekaas tidallydrivenfjordlikestraitclosetoanamphidromicregion
AT bhansen tidallydrivenfjordlikestraitclosetoanamphidromicregion
_version_ 1718438921647423488