Validation of a new fully automated software for 2D digital mammographic breast density evaluation in predicting breast cancer risk
Abstract We compared accuracy for breast cancer (BC) risk stratification of a new fully automated system (DenSeeMammo—DSM) for breast density (BD) assessment to a non-inferiority threshold based on radiologists’ visual assessment. Pooled analysis was performed on 14,267 2D mammograms collected from...
Guardado en:
Autores principales: | Paolo Giorgi Rossi, Olivera Djuric, Valerie Hélin, Susan Astley, Paola Mantellini, Andrea Nitrosi, Elaine F. Harkness, Emilien Gauthier, Donella Puliti, Corinne Balleyguier, Camille Baron, Fiona J. Gilbert, André Grivegnée, Pierpaolo Pattacini, Stefan Michiels, Suzette Delaloge |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2ae46de7556848ca9eefd8ac6c0d1149 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Coffee, Tea, and Mammographic Breast Density in Premenopausal Women
por: Adashi Margaret Odama, et al.
Publicado: (2021) -
Association between skeletal muscle mass and mammographic breast density
por: Kwan Ho Lee, et al.
Publicado: (2021) -
Automated percent mammographic density, mammographic texture variation, and risk of breast cancer: a nested case-control study
por: Erica T. Warner, et al.
Publicado: (2021) -
Prediagnostic circulating metabolites in female breast cancer cases with low and high mammographic breast density
por: Benedetta Bendinelli, et al.
Publicado: (2021) -
Mammographic texture features associated with contralateral breast cancer in the WECARE Study
por: Gordon P. Watt, et al.
Publicado: (2021)