Implementation of quantum and classical discrete fractional Fourier transforms

Fourier analysis has become a standard tool in contemporary science. Here, Weimann et al. report classical and quantum optical realizations of the discrete fractional Fourier transform, a generalization of the Fourier transform, with potential applications in integrated quantum computation.

Guardado en:
Detalles Bibliográficos
Autores principales: Steffen Weimann, Armando Perez-Leija, Maxime Lebugle, Robert Keil, Malte Tichy, Markus Gräfe, René Heilmann, Stefan Nolte, Hector Moya-Cessa, Gregor Weihs, Demetrios N. Christodoulides, Alexander Szameit
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/2aeceb457d864261aadab439038810bc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2aeceb457d864261aadab439038810bc
record_format dspace
spelling oai:doaj.org-article:2aeceb457d864261aadab439038810bc2021-12-02T16:57:01ZImplementation of quantum and classical discrete fractional Fourier transforms10.1038/ncomms110272041-1723https://doaj.org/article/2aeceb457d864261aadab439038810bc2016-03-01T00:00:00Zhttps://doi.org/10.1038/ncomms11027https://doaj.org/toc/2041-1723Fourier analysis has become a standard tool in contemporary science. Here, Weimann et al. report classical and quantum optical realizations of the discrete fractional Fourier transform, a generalization of the Fourier transform, with potential applications in integrated quantum computation.Steffen WeimannArmando Perez-LeijaMaxime LebugleRobert KeilMalte TichyMarkus GräfeRené HeilmannStefan NolteHector Moya-CessaGregor WeihsDemetrios N. ChristodoulidesAlexander SzameitNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-8 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Steffen Weimann
Armando Perez-Leija
Maxime Lebugle
Robert Keil
Malte Tichy
Markus Gräfe
René Heilmann
Stefan Nolte
Hector Moya-Cessa
Gregor Weihs
Demetrios N. Christodoulides
Alexander Szameit
Implementation of quantum and classical discrete fractional Fourier transforms
description Fourier analysis has become a standard tool in contemporary science. Here, Weimann et al. report classical and quantum optical realizations of the discrete fractional Fourier transform, a generalization of the Fourier transform, with potential applications in integrated quantum computation.
format article
author Steffen Weimann
Armando Perez-Leija
Maxime Lebugle
Robert Keil
Malte Tichy
Markus Gräfe
René Heilmann
Stefan Nolte
Hector Moya-Cessa
Gregor Weihs
Demetrios N. Christodoulides
Alexander Szameit
author_facet Steffen Weimann
Armando Perez-Leija
Maxime Lebugle
Robert Keil
Malte Tichy
Markus Gräfe
René Heilmann
Stefan Nolte
Hector Moya-Cessa
Gregor Weihs
Demetrios N. Christodoulides
Alexander Szameit
author_sort Steffen Weimann
title Implementation of quantum and classical discrete fractional Fourier transforms
title_short Implementation of quantum and classical discrete fractional Fourier transforms
title_full Implementation of quantum and classical discrete fractional Fourier transforms
title_fullStr Implementation of quantum and classical discrete fractional Fourier transforms
title_full_unstemmed Implementation of quantum and classical discrete fractional Fourier transforms
title_sort implementation of quantum and classical discrete fractional fourier transforms
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/2aeceb457d864261aadab439038810bc
work_keys_str_mv AT steffenweimann implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT armandoperezleija implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT maximelebugle implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT robertkeil implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT maltetichy implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT markusgrafe implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT reneheilmann implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT stefannolte implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT hectormoyacessa implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT gregorweihs implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT demetriosnchristodoulides implementationofquantumandclassicaldiscretefractionalfouriertransforms
AT alexanderszameit implementationofquantumandclassicaldiscretefractionalfouriertransforms
_version_ 1718382614506635264